COLOR LASER COPIER 1120/1130/1150

SERVICE

 HANDBOOK
REVISION 2

Canon

IMPORTANT

THE INFORMATION CONTAINED HEREIN IS PUBLISHED BY CANON, INC., JAPAN, AND IS FOR REFERENCE USE ONLY. SPECIFICATIONS AND OTHER INFORMATION CONTAINED HEREIN MAY VARY SLIGHTLY FROM ACTUAL MACHINE VALUES OR THOSE FOUND IN ADVERTISING AND OTHER PRINTED MATTER.

ANY QUESTIONS REGARDING INFORMATION CONTAINED HEREIN SHOULD BE DIRECTED TO THE COPIER SERVICE DEPARTMENT OF THE SALES COMPANY.

COPYRIGHT © 2000 CANON INC.

Printed in Japan

Imprimé au Japon

```
Use of this manual should be strictly supervised to avoid disclosure of confidential information.
```

Prepared by
OFFICE IMAGING PRODUCTS TECHNICAL SUPPORT DIVISION

CANON INC.

5-1, Hakusan 7-chome, Toride-shi Ibaraki, 302-8501 Japan

model: COLOR LASER COPIER
 1120/1130/1150

NO. : F-04-E00008
DATE: DEC. 2000Major quality issuesQuality upgrade/production efficiency
Field quality problems Miscellaneous

LOCATION
 SUBJECT

Revision of Service Handbook

The captioned technical documentation has been revised to reflect the following:

Reasons
to update the descriptions in the previous documentation covering modification of functions and correction of typographical mistakes.

The present revision is a full revision. Kindly make arrangements so that the old document may be replaced with the one being released. Further, please make sure the old document is properly disposed of.

CONTENTS

CHAPTER 1 MAINTENANCE AND INSPECTION

A. Scheduled Servicing List 1-1

1. Copier 1-1
2. Paper Deck 1-3
B. Periodically Replaced Parts 1-4
C. Consumables and Durables 1-5
3. Copier 1-5
4. Paper Deck 1-7
D. Image Adjustment Basic Procedure 1-9
E. Points to Note for Scheduled Servicing 1-12

CHAPTER 2 STANDARDS AND ADJUSTMENTS

A. Image Adjustment System 2-1
B. Exposure System 2-8
C. Image Formation System 2-9
D. Pickup/Feeding System 2-14
E. Fixing System 2-24
F. Externals/Controls 2-27
G. Paper Deck 2-28
H. Electrical System 2-32

CHAPTER 3 ARRANGEMENT AND FUNCTIONS OF ELECTRICAL PARTS

A. Sensors 3-1

1. CLC1120/1130 3-1
2. CLC1150 3-3
B. Thermistors, Lamps, and Heaters 3-5
C. Clutches 3-6
3. CLC1120/1130 3-6
4. CLC1150 3-7
D. Solenoids 3-8
5. CLC1120/1130 3-8
6. CLC1150 3-9
E. Fans 3-10
F. Motors 3-11
G. PCBs 3-13
H. Paper Deck 3-15
7. Sensors and Switches 3-15
8. Motors, Clutches, Solenoids, and PCBs 3-16
I. Variable Resistors (VR), Light-Emitting
Diodes (LED), and Check Pins by PCB 3-17
9. DC Driver PCB 3-17
10. CPU PCB 3-18
11. IP main PCB 3-18
12. Analog Processor PCB 3-19
13. Laser Driver PCB 3-19
14. Lamp Regulator PCB 3-20
15. DC Fuse PCB 3-20
16. AC Fuse PCB 3-21
17. Developing Bias PCB 3-21
18. HVT-AC PCB 3-22
19. Potential Measurement PCB 3-22

CHAPTER 4 SERVICE MODE

A. Outline 4-1

1. Starting Service Mode and Making Selections 4-2
2. Ending Service Mode 4-3
3. Backing Up the RAM 4-3
4. Basic Operation 4-12
B. DISPLAY (control display mode) 4-14
C. I/O (I/O display mode) 4-32
5. DC-CPU 4-32
6. R-CPU 4-48
D. ADJUST (adjustment mode) 4-51
E. FUNCTION (operation check mode) 4-97
F. OPTION (settings mode) 4-119
G. PG (test print) 4-134
H. COUNTER (counter mode) 4-136

CHAPTER 5 SELF DIAGNOSIS

A. Copier
5-1
C. Sorter
5-23

Abstract

B. RDF

5-22

APPENDIX

A. General Timing Chart A-1
B. Signals and Abbreviations A-3

1. Signals A-3
2. Abbreviations A-8
C. General Circuit Diagram A-9
D. Paper Deck General Circuit Diagram A-13
E. Specifications A-15
3. Type A-15
4. System A-15
5. Functions A-16
6. Others A-17
7. Default Ratios A-17
8. Copying Speed A-18
9. CLC Paper Deck-E1 A-19

CHAPTER 1 MAINTENANCE AND INSPECTION

A. Scheduled Servicing List

1. Copier

- Caution:

Do not use solvents or oils other than those listed.

Note:

If you have cleaned the sensor, be sure to execute the following in service mode:

- For the black toner concentration sensor, FUNCTION>INSTALL>INIT-D.
- For pre-cleaning sensor, FUNCTION>SENS-ADJ>CLN-OFST.

2. Paper Deck

B. Periodically Replaced Parts

As of December 2000

No.	Part name	Part number	Q'ty	Life (copies)	Remarks
1	Ozone filter (FM2, 5, 6)	FB2-4397	3	25,000	Or, 1 yr.
2	Air filter (FM1)	FB4-4819	1	25,000	Or, 1 yr.
3	Air filter (FM3)	FF5-8405	1	25,000	Or, 1 yr.
4	Air filter (FM14, 15)	FB2-0247	2	25,000	Or, 1 yr.
5	Toner filter (FM5, 6)	FB4-4442	2	25,000	Or, 1 yr.
6	Ozone filter (FM5)	FB4-9641	1	25,000	Or, 1 yr.

C. Consumables and Durables

1. Copier

As of December 2000

No.	Part name	Part number	Q'ty	$\begin{gathered} \text { Life } \\ \text { (copies) } \end{gathered}$	Remarks
1	Cleaner blade (drum cleaner assembly)	FB4-4677	1	20,000	Simultaneously with photosensitive drum.
2	Drum cleaner scoop-up sheet	FF5-3993	1	20,000	Simultaneously with cleaning blade.
3	Side seal, front (drum cleaner assembly)	FF5-8392	1	20,000	Simultaneously with cleaning blade.
4	Side seal, rear (drum cleaner assembly)	FF5-8393	1	20,000	Simultaneously with cleaning blade.
5	No. 2 scoop-up sheet (precleaning sensor)	FG6-1046	1	20,000	Simltaneously with cleaning blade.
6	Grid plate (primary charging assembly)	FB4-5117	1	20,000	For high temperature/high humidity, 15,000.
7	Primary charging assembly cleaning pad, upper	FF2-3552	1	20,000	For high temperature/high humidity, 15,000.
8	Primary charging assembly cleaning pad, lower	FF2-3551	1	20,000	
9	Primary charging wire, 100V	FY3-0030	1	20,000	For high temperature/high humidity, 15,000.
	Primary charging wire, 120/ $230 \mathrm{~V}$	FY3-0040	1	20,000	
10	Scanning lamp	FH7-3349	1	25,000	
11	Manual feeder pickup roller	FF5-4327	2	25,000	Manual feeder counter reading.
12	Manual feeder feed roller	FF5-4331	1	25,000	Manual feeder counter reading.
13	Manual feeder separation roller	FF2-4710	1	25,000	Manual feeder counter reading.
14	Attraction roller scraper	FF5-8427	1	25,000	
15	Waste toner case (6 pc/box)	FY9-7006	1	25,000	By user. 100 V 120/230V
16	Post-cleaning charging wire	FY3-0030	1	20,000	
	Post-cleaning charging wire	FY3-0040	1	20,000	
17	Fixing cleaning belt (upper, lower)	FB4-4543	1	25,000	
18	Drum cleaner end felt, front	FF5-2246	1	40,000	Simultaneously with
19	Drum cleaner end felt, rear	FF5-2247	1	40,000	cleaning blade.
20	No. 2 cleaning blade	FB2-0421	2	40,000	20,000 per edge.
21	Fixing upper roller	FB4-4484	1	40,000	Or, 1 yr .
22	Oil applying felt	FF5-9084	1	40,000	20,000 per side.
23	Y starter developer	F42-3132	1	40,000	
		F42-3133	1	40,000	120V UL only.
24	M starter developer	F42-3122	1	40,000	
		F42-3123	1	40,000	120V UL only.
25	C starter developer	F42-3112	1	40,000	
		F42-3113	1	40,000	120 V UL only.

No.	Part name	Part number	Q'ty	$\begin{array}{\|c\|} \hline \text { Life } \\ \text { (copies) } \end{array}$	Remarks
26	Bk starter developer	F42-3102	1	40,000	
		F42-3103	1	40,000	120V UL only.
27	Separation/internal and external static charging wires Separation/internal and external charging wires	FY3-0030	1	50,000	100 V
		FY3-0040	1	50,000	120/230V
28	Attraction brush unit	FG6-0798	1	50,000	As a unit.
29	Transfer blade unit	FG6-0797	1	50,000	As a unit.
30	Transfer drum cleaner	FB4-4953	2	50,000	
31	Polishing roller	FB4-5111	1	50,000	
32	Transfer drum sheet	FB4-4195	1	50,000	
33	Separation push-up roll	FB2-0631	1	50,000	Simultaneously with transfer sheet.
34	Transfer side scraper	FF5-2070	2	50,000	
35	Fixing lower roller	FB4-4486	1	50,000	Or, 1 yr.
36	Re-pickup feed roller, front (re-pickup assembly)	FF5-2101	1	100,000	Duplexing counter reading.
37	Re-pickup feed roller, rear (repickup assembly)	FF5-2102	1	100,000	Duplexing counter reading.
38	Feed roller (re-pickup assembly)	FF5-2103	1	100,000	Duplexing counter reading.
39	Separation roller (re-pickup assembly)	FF5-2104	1	100,000	Duplexing counter reading.
40	Feed roller, front (duplexing unit)	FF5-8366	1	100,000	Duplexing counter reading.
41	Feed roller, rear (duplexing unit)	FF5-8367	1	100,000	Duplexing counter reading.
42	Oil applying blade	FB4-4536	1	100,000	
43	Fixing heater, upper	FH7-4617	1	100,000	100 V
		FH7-4618	1	100,000	120 V
		FH7-4619	1	100,000	230 V
44	Fixing heater, lower	FH7-4611	1	100,000	100 V
		FH7-4612	1	100,000	120 V
		FH7-4613	1	100,000	230 V
45	Pre-exposure lamp	FG5-3181	1	150,000	
46	Primary charging assembly	FG6-0892	1	150,000	
47	Separation charging assembly	FG6-0795	1	150,000	
48	Internal static eliminator	FG6-0796	1	150,000	
49	Eternal static eliminator	FG6-0801	1	150,000	
50	Post-cleaning charging assembly	FG6-0888	1	150,000	
51	Insulating bush (fixing assembly)	FB4-7807	4	150,000	
52	Pickup roller, front (cassette)	FF5-7829	1	250,000	Per cassette holder.
53	Pickup roller, rear (cassette)	FF5-7830	1	250,000	Per cassette holder.
54	Separation roller (cassette)	FB2-7777	1	250,000	Per cassette holder.
55	Feed roller (cassette)	FF5-7837	1	250,000	Per cassette holder.
56	Y developing assembly	FG6-0781	1	500,000	
57	M developing assembly	FG6-0782	1	500,000	
58	C developing assembly	FG6-0783	1	500,000	
59	Bk developing assembly	FG6-0784	1	500,000	

2. Paper Deck

As of December 2000

No.	Part name	Part number	Q'ty	Life (copies)	Remarks
1	Paper deck pickup roller	FB4-2033	2	250,000	Actual number of copies.
2	Paper deck feeding roller	FB4-2034	2	250,000	Actual number of copies.
3	Paper deck separation roller	FB2-7777	1	250,000	Actual number of copies.

D. Image Adjustment Basic Procedure

E. Points to Note for Scheduled Servicing

Optical System				Process System			
Part	Tool and others	Work and remarks		Part	Tool and others	Work and remarks	
Lens, CCD	Blower brush	Cleaning (Note 1)	Γ	Charging wire, shielding plate, block	Lint-free paper, alcohol	Dry wiping; then, cleaning with alcohol Do NOT use water. (Note 2)	
Copyboard sheet, copyboard glass	Alcohol, lint-free paper	Cleaning	$\\|$				
Standard white plate			Al	Pre-exposure lamp, filter, dust-proofing glass, potential sensor	Lint-free paper, blower brush	Cleaning	
Reflecting plate, No. 1 through No. 3 mirrors	Blower brush	Cleaning		Pre-cleaning sensor assembly, No. 2 scoop-up sheet assembly	Cotton wad, lint-free paper Blower brush	Use cotton wad to clean the sensor assembly. (Note 3)	
Scanner rail	Silicone oil	Cleaning; then, lubricating		Black toner concentration sensor assembly, No. 2 blade assembly	Lint-free paper, blower brush	Remove the buildup of toner; then, dry wipe. Do NOT use solvent. (Note 4)	
Part	Tool and others	Work and remarks	\bigcirc				
Oil applying felt, oil applying blade	Paper rag	Cleaning		Developing System			
Thermistor	Solvent	Cleaning		Part	Tool and others	Work and remarks	
Separation claw Inlet guide				Developing assembly butting roll, butting block (photosensitive drum)	Solvent	Cleaning at time of replacing the drum.	
-net guide				Developing roll	Solvent	Cleaning at time of replacing the developer.	
Part	Tool and others	Work and remarks	\% \% 〇O				
Charging wire, shielding plate, block	Lint-free paper, alcohol	Dry wiping; then, cleaning with alcohol. Do NOT use water. (Note 2)		Pickup/Feeding System			
			\qquad	Part	Tool and others	Work and remarks	
Transfer drum cleaner assembly	Blower brush	Cleaning		Attraction roller, attraction roller cleaner pan	Lint-free paper	Cleaning (Remove the unit.)	
Jam sensor (PS6) metal plate resin tape section	Blower brush Lint-free paper	Dry wiping		Registration roller, pre-registration roller 1/2	Alcohol, lint-free paper	Cleaning	
Jam sensor (PS5) metal plate	Blower brush Lint-free paper	Dry wiping		Pickup vertical path roller	Alcohol, lint-free paper	Cleaning	
Note 1: Take care Note 2: Replace	not to touch the mirror and primary charging wire;	s. Take care so that the CCD t other charging wires after m NS-ADJ>CLN-OFST. Therea	will not be soiled with dust. aking sure that they are completely dry; further, be sure NOT to clean the grid plate.	Registration path middle guide	Alcohol, lint-free paper	Clean the guide surface	

Note 2: Replace the primary charging wire; insert other charging wires after making sure that they are completely dry; further, be sure NOT to clean the grid plate.
Note 3: After mounting, execute FUNCTION>SENS-ADJ>CLN-OFST. Thereatter, record the values of ADJUST>SENS-ADJ>CLN-TH, CLN-TMP on the service label Note 4: After mounting, execute FUNCTION>INSTALL>INIT-D.

CHAPTER 2 STANDARDS AND ADJUSTMENTS

A. Image Adjustment System

1 Image Margin
The image margin of a copy is normal if it is as follows when made in Direct with original detection OFF.
Leading edge: $8 / 0 \pm 1.5 \mathrm{~mm}(8.0 \pm 2.0 \mathrm{~mm})$
Left/right: $\quad 2.0 \pm 1.5 \mathrm{~mm}(2.0 \pm 1.5 \mathrm{~mm})$
Trailing edge: $2.5 \pm 1.5 \mathrm{~mm}(4.5 \pm 2.0 \mathrm{~mm})$
The value in parentheses represents double-sided copying.

Figure 2-1 Leading Edge Image Margin

Figure 2-2 Left/Right Image Margin

When making checks and adjustments, observe the following order:
a. Adjusting the left/right registration
b. Adjusting the attraction position (ATT-T)
c. Adjusting the image margin (RG-XA, RG-XB)
d. Adjusting the transfer delay (TRDELAY)
e. Adjusting the image read start position (ADJ-XY)
f. Adjust the image trailing edge margin (TR-END-A, TR-END-B)
a. Adjusting the Left/Right Registration

1) Make ten copies each from all cassettes, multifeeder, and duplexing unit, and check the left/right registration A; it is correct if as follows:
for cassette: $\quad 2.0 \pm 1.5 \mathrm{~mm}$
for multifeeder: $\quad 2.0 \pm 1.5 \mathrm{~mm}$
for duplexing unit: $2.0 \pm 1.5 \mathrm{~mm}$
2) If the registration A is not as indicated, perform the following:

Figure 2-3

- For the Cassette

1) Remove the cassette front cover from the cassette holder you want to adjust.
2) Loosen the left/right screw [1].
3) Turn the adjusting screw [2] to adjust the position of the horizontal registration adjusting plate so that the horizontal registration on an image is $2.0 \pm 1.5 \mathrm{~mm}$. (A full turn causes a shift of about 0.7 mm .)

- To increase the registration along the front, turn the adjusting screw counterclockwise.
- To increase the registration along the rear, turn the adjusting screw clockwise.

4) After the adjustment, be sure to perform "registering the paper width basic value."

Figure 2-4

- For the Multifeeder

Turn the screw [1] to move the position of the tray so that the registration is 2.0 ± 1.5 mm in Direct.

Figure 2-5

- For the Duplexing Unit

Loosen the screw [1], and move the position of the paper jogging guide so that the registration is $2.0 \pm 1.5 \mathrm{~mm}$ in Direct.

Figure 2-6
b. Adjusting the Attraction Position
(ATTRACT)

1) Select A4.
2) Select ADJUST>FEED-ADJ>ATTCHK.
3) Set ATT-CHK to '1' (2-sheet retention; sides B and A), and press OK.
4) Select ATT-ON, and press OK.

- Copy paper will be picked up, attracted, and stopped.

5) Slide out the transfer frame.
6) Place a ruler and copy paper against the marking (Figure 2-7) etched to the transfer drum ring (front, rear), and measure the position d of the copy paper in relation to the leading edge of the copy paper. Perform this for both sides A and B.
7) Make adjustments so that d is $0 \pm 0.5 \mathrm{~mm}$ in service mode (ADJUST>FEED-ADJ). for side A:ATT-T-A
for side B: ATT-T-B

- Changing ATT-T-A, ATT-T-B to ' 1 ' will shift the point of attraction by about 0.4 mm .
- A higher setting will delay the start of attraction (in the direction of the black arrow) while a lower setting advances it (in the direction of the white arrow).

8) After adjustment, turn off and then on the power switch.

- Keep in mind that copies made in normal mode will be black if you forget to turn off and then on the power switch.

Figure 2-7

Figure 2-8
c. Adjusting the Image Leading Edge Margin (RG-XA, RG-XB)

1) Select ADJUST>FEED-ADJ>RGSTCHK in service mode.
2) Set RGST-CHK to '1' (2-sheet retention; sides B and A), and press OK.
3) Select RGST-ON, and press OK.

- A total of two prints (one each shown in the figure) will be generated.
for side A: ADJUST>FEED-ADJ>RGXA
for side B : ADJUST $>$ FEED-ADJ $>$ RGXB
- Setting it to '1' will shift the leading edge margin by about 0.06 mm .
- A higher setting increases the leading edge margin while a lower setting decreases it.

Test print on side A

Test print on side B
Figure 2-9

Figure 2-10
d. Adjusting the Transfer Delay (TRDELAY)

1) Select FUNCTION>ATTRACT>TR1CHK in service mode.
2) Set TR1-CHK to '1' (2-sheet retention; both sides B and A), and press OK.
3) Select TR1-ON, and press OK.

- A total of two prints (one each shown in the figure) will be generated.

Test print on side A

Test print on side B
Figure 2-11

Figure 2-12
e. Adjusting the Image Read Start Position (ADJ-XY)

1) Place the Test Sheet on the copyboard glass.
2) Select ADJUST>ADJ-XY in service mode.
3) on the ADJ-XY screen, press the Copy Start key.

- The appropriate copying mode will automatically be selected, and a copy is made with a shift of about 50 mm as shown in the figure.
) If part of the image is missing, decrease the setting of ADJ-X, ADJ-Y in service mode.

5) If part of the image is outside the image area, increase the setting of ADJ-X, ADJY.
6) Press the Copy Start key once again, and make a check.
7) Press the Reset key.
f. Adjusting the Image Trailing Edge Margin (TR-END-A, B; end of transfer high voltage)
If you have replaced the transfer drum unit in the field, correct the variation in the end of the transfer voltage.
8) Select ADJUST>FEED-ADJ>TR-ENDA or B in service mode, and enter '25' (10 mm).
9) Select ADJUST $>$ FEED-ADJ $>$ TR2-ON; then, press the OK key.
10) Measure the distance $X(\mathrm{~mm})$ between the point at which blurring starts along the trailing edge of the image on the generated test print and the trailing edge of the image.
11) Enter the result of $(10-x) / 0.4$ as the adjustment value of TR-END-A or -B. (Round the result up to a whole number.)
12) Select ADJUST>FEED-ADJ>TR2-ON in service mode once again; then, press the OK key.
13) Check to make sure that the image along the trailing edge of the generated test print is not blurred.
14) Record the value of ADJUST>FEED-ADJ>TR-END-A or -B on the service label.

Figure 2-13

Figure 2-13a

B. Exposure System

1
 Routing the Scanner Drive Cable

Route the scanner drive cable as indicated; i.e., [1] through [8]. Then, perform "adjusting the mirror position."

Figure 2-14

2 Adjusting the Mirror Position

Be sure to adjust the position of the mirror when you have routed the scanner drive cable.

1) Extend the arm of the mirror positioning tool (FY9-3040) fully.
2) Fit the mirror positioning tool between No. 1 mirror base and No. 2 mirror base.
3) Route the scanner drive cable to the No. 1 mirror mount.

Figure 2-15

Figure 2-16

C. Image Formation System

1

Adjusting the Height of Charging Wires

The height (position) of the charging wire of each charging assembly may be adjusted by turning the screw found behind the assembly. A full turn of the screw will shift the charging wire by about 0.7 mm .

You cannot, however, change the height of the wire of the internal static eliminator, external charge eliminator, separation charging assembly or the post-cleaning charging assembly.

2

Points to Note about the Photosensitive Drum

a. The photosensitive drum is vulnerable to strong light, and exposure to strong light for an appreciable period of time will lead to white spots or black bands on copies. Whenever you have removed the photosensitive drum from the copier, be sure to wrap the light-blocking sheet (or five to six sheets of fresh copy paper) around it, and keep it in a dark place.
b. If you are installing a new photosensitive drum, be sure to perform the following:

1) Install the new photosensitive drum. At this time, be sure to mount it so that the lot No. label attached inside it is toward the front of the copier.
2) Mount the primary charging assembly, pre-cleaning charging assembly, photosensitive drum cleaner assembly, and developing assemblies.
3) Coat the No. 2 blade of the black toner concentration sensor evenly with drum cleaner lubricant (TKN0480).
4) Coat the blade of the photosensitive drum cleaner assembly with drum cleaner lubricant (TKN-0480).
5) Dry wipe the window of the black toner concentration sensor, and mount it.

Figure 2-17
6) Dry wipe the window of the precleaning sensor, and mount it.
7) Turn on the power switch, and keep the copier in standby state.
8) Select FUNCTION $>$ INSTALL> STIR-4 in service mode, and execute it.
9) Select FUNCTION>SENS-ADJ> CLN-OFST, and execute it.
10) Record the settings of ADJUST> SENS-ADJ>CLN-TH, CLN-TMP on the service label attached behind the front right cover.
11) Select FUNCTION $>$ INSTALL> INIT-D in service mode, and execute it.
c. If the surface of the photosensitive drum is soiled, wipe it with a flannel cloth coated with toner. (Do NOT use paper, lint-free or otherwise.)
Do not use solvent when cleaning it. Do not touch its surface.

Adjusting the Position of the 3 Photosensitive Drum Fixing Shaft

Slide the photosensitive drum frame unit about 5 cm out of the copier, and then slide it back in. If the movement is not smooth, adjust the position of the photosensitive drum fixing shaft using the drum shaft positioning tool (FY9-3045).

This adjustment, however, need not be made if the images are free of color displacement, blurring, and faults at intervals and, moreover, the discrepancy between the photosensitive drum fixing shaft and the hole of the photosensitive drum flange is about 1 mm .

1) Slide out the photosensitive drum unit from the copier.
2) Remove the six screws [1], and detach the photosensitive drum butting blocks [2] (front, back); then, detach the photosensitive drum [3] from the photosensitive drum frame unit [4].
3) Slide the photosensitive drum frame unit into the copier, and secure it in place with three screws.
4) Secure the drum motor assembly [5] to the copier temporarily with seven screws [6].

Figure 2-18

Figure 2-19
5) Secure the drum shaft positioning tool [7] in place to the photosensitive drum frame unit with the two screws [8] removed in step 2).
6) Secure the drum motor assembly in place with seven screws.
7) Detach the drum shaft positioning tool, and slide out the photosensitive drum unit from the copier; then, mount the unit and parts removed in step 1).

4 Use of Grease

Do NOT use grease (conducting or otherwise) to the slip ring for the drum heater.

5
 Adjusting the Developing Assembly S-B Gap

If you have replaced the developing blade, adjust the S-B gap of each sleeve using the SB gap gauge (FY9-3044).

Figure 2-20

Developer	S-B gap
Yellow	0.62 mm
Cyan	0.74 mm
Magenta	0.74 mm
Black	0.48 mm

Table 2-1

6 Replacing the Developer

1) Open the hopper unit fully.
2) An appreciable amount of developer will fall out in the next step. Keep a plastic bag [1] as shown.
3) Detach the cap [2] from the discharge opening found at the front bottom of the developing assembly whose developer you want to replace.
4) Select FUNCTION $>$ INSTALL in service mode.
5) While keeping the plastic bag against the discharge opening, press RECV-M/C/Y/ \mathbf{K}, as appropriate, in service mode.

- When the developer has stopped pouring, press the Stop key to stop the operation.

6) Fit the cap back on the discharge opening.
7) Remove the screw, and detach the developing assembly; then, detach the cap from the discharge opening.
In the case of the black developing assembly, disconnect the connector also.
8) While tilting the developing assembly, turn the gear by hand to discharge all remaining developer.
At this time, tilt the developing assembly farther down while turning the gear so that no toner will remain when it is finally held upright.
9) Fit the cap to the discharge opening.
10) Mount the developing assembly to the copier.
11) At the end of the wait period, select FUNCTION>INSTALL in service mode.
12) Press SPLY-M/C/Y/K, as appropriate.
13) See that the developing assembly is locked in place, and the screw inside it rotates (about 10 sec).

Figure 2-21

Figure 2-22
14) Fit the developer supply funnel that comes with the copier to the developing assembly upright.
15) Put the developer into the developing assembly.

- Turn the developer container slowly while tilting it to facilitate the work.

16) When done, press the Stop key to stop the operation.
17) Execute STIR-Y/M/C/K in service mode (about 10 min).
18) Execute INIT-Y/M/C/K in service mode (about 10 min).
19) Select ADJUST>DENS in service mode.
20) Record the data of the DENS screen on the service label.

7 Points to Note about the Pre-

If you have removed or replaced the precleaning sensor assembly, perform the following:

1) Dry wipe the window of the pre-cleaning sensor, and mount it.
2) Turn on the power switch, and keep the copier in standby state.
3) Select and execute FUNCTION $>$ SENS-ADJ>CLN-OFST in service mode.
4) Record the settings of ADJUST $>$ SENS-ADJ>CLN-TH, CLN-TMP in service mode to the service label behind the front right door.

8
 Points to Note about the Black Toner Concentration Sensor

If you have dry wiped the window of the black toner concentration sensor, select and execute FUNCTION>INSTALL>INIT-D after mounting it.

Figure 2-23

Figure 2-24

D. Pickup/Feeding System

1
Orientation of the Cassette Pickup Roller

When mounting the pickup roller [1] to the pickup assembly, be sure that the round marking [2] on the rubber portion is at the copier's front. The pickup roller is identified by color as follows:

- for the front, use the gold-colored roller.
- for the rear, use the silver-colored roller.

[1]
[1]

Figure 2-25

Figure 2-26

Figure 2-27

4
 Adjusting the Pressure of the Separation Roller

If double feeding or pickup failure occurs during pickup, adjust the position of the pressure spring of the separation roller.
a. If double feeding occurs, move the spring in the direction of arrow A.
b. If pickup failure occurs, move the spring in the direction of arrow B.

Figure 2-28

Figure 2-29

Figure 2-30

Attaching the Timing Belt for the Multifeeder Assembly

Keep the rack plate [1] of the multifeeder in closed state.

Move the slide volume [2] in the direction of the arrow, and attach the timing belt [3] to the pulley.

Figure 2-31

Figure 2-32

[1]

Figure 2-33

10
 Position of the Duplexing Feed Roller Solenoid

While the steel core of the solenoid is drawn to the copier, mount the duplexing feed solenoid so that the distance L2 between the top edge of the feed roller and the holding tray is $49 \pm 0.5 \mathrm{~mm}$.

Figure 2-34

Replacing the Transfer Drum Sheet

- Caution:

The transfer drum frame is equipped with a slip-stop mechanism; as such, keep the following in mind:

- Do not turn the transfer drum clockwise with your fingers inside the opening in the transfer drum while the transfer drum is on the transfer drum frame.
- When the transfer drum is off the frame, it will tend to rotate in clockwise direction. (If the transfer drum is rotated clockwise, the transfer brush and the attraction brush will become damaged.
a. Removing the Transfer Drum Sheet

1) Open the front cover; then, slide out the hopper, and open it 180°.
2) Slide out the transfer drum frame.
3) Detach the transfer drum from the transfer drum frame.
4) Remove the four TP screws [1], and remove the transfer drum side scraper [2].

Figure 2-35
5) Peel off the trailing edge of the transfer drum sheet and keep it off the transfer drum.

Figure 2-36
6) Peel off the leading edge of the transfer drum sheet.

Figure 2-37
7) Peel off the transfer drum sheet while holding it on its leading edge.

Caution:

Remove all traces of adhesive from the transfer drum ring.

Figure 2-38
b. Attaching the Transfer Drum Sheet

Caution:

Do not touch the area on the transfer drum sheet where copy paper will be attracted.

1) Shift the locking lever of the transfer blade and the attraction brush in clockwise direction to release them.
2) Clean the area where double-sided tape is attached on the transfer drum ring with alcohol.
3) Turn the ring so that the ring linking plate [1] is positioned as shown.
4) Remove the double-sided tape from the leading edge (where holes are found) of the transfer drum sheet.
5) By referring to the long hole in the left side of the linking plate and the long hole on the left side of the sheet, attach the transfer drum sheet so that it is horizontal while observing the following:

Figure 2-39

Figure 2-40

Figure 2-41

Caution:

1. Fix the side of the transfer drum sheet with a long hole temporarily in place so that that the gap between the left side of the transfer drum sheet and the edge of the transfer ring is about 0.5 mm .
2. Then, lightly pull the transfer drum sheet to the right so that the middle of the sheet will not become slack, and attach the right side of the sheet where a round hole is found.
3. At this time, check to make sure that the right edge of the transfer drum sheet will not overlap the edge of the transfer ring; otherwise, shift the left side of the sheet where a long hole is found, and start over with step 2.
6) Let the transfer drum sheet drop on its own weight, and remove the backing paper from both sides of the sheet.

Figure 2-42

Figure 2-43
7) without holding the transfer drum sheet, turn the front side of the transfer ring to wrap it around the transfer drum.

Figure 2-44

Caution:

After wrapping the transfer drum sheet around the transfer drum, check the gap between the leading edge and the trailing edge of the sheet; make sure it is 0 ± 1.5 mm . If not, go back to step 5), and make sure that the sheet is horizontal, and start over.

Figure 2-44a

Figure 2-44b

Figure 2-45

Figure 2-46
10) Without pulling the transfer drum sheet, lightly press along the middle of the double-sided tape, along the trailing edge of the sheet in sequence: [1], [2], and [3].
11) Move the thumbs in axial direction, lightly pressing against the linking plate so that the double-sided tape will be firmly in contact.
12) Shift back the lever released in step 1).
13) Check the transfer drum sheet for scratches, dents, and slack.

Figure2-46a

Figure 2-46b

Figure 2-46c

Incorrectly Attached Sheet
Figure 2-46d

Incorrectly Attached Sheet
Figure 2-46e

12
 When Replacing the Transfer Drum Assembly

If you have replaced the transfer drum, perform the following in service mode (ADJUST>FEED-ADJ; p. 2-1):

1. Adjusting the attraction position (ATT-TA, ATT-T-B)
2. Adjusting the image leading edge margin (RG-XA, RG-XB, RG-Y)
3. Transfer delay (TR-DLY-A, TR-DLY-B)
4. Adjusting the image trailing edge margin (TR-END-A, TR-END-B)

Position of the Paper

 Deflecting Plate Solenoid (SL10; delivery assembly)Loosen the adjusting screw [4] to make adjustments while the paper deflecting plate [2] is butting against the delivery upper guide [3] when the solenoid [1] is on (viewing the delivery assembly from the side at the rear).

Applying Lubricant to the Transfer drum Cleaner

1) Use a specific lubricant (e.g., FY9-6006).
2) Put a drop of lubricant (one drop each) at points indicated (A).
3) Turn the gear several times by hand so that the lubricant spreads inside the bushing.
4) Put another drop (one each) once again, and repeat step 3.
5) When all amounts of lubricant have spread to the inside of the bushing, wipe the excess lubricant with lint-free paper (indicated by dashed lines).

Figure 2-47

Figure 2-47a

E. Fixing System

1 When Replacing the Fixing Heater

Do not touch the surface of the heater.

Reference:

The copier's fixing heater has a specific orientation (front, rear); be sure to mount it so that the black lead line is at the rear.

2 Adjusting the Nip (nut for locking the fixing assembly)

a. Measuring the Nip Width

If you are taking measurements while the roller is not hot, let the copier complete its standby period, wait 15 min , and make 20 copies.
b. Taking Measurements

1) Start service mode.
2) Select FUNCTION $>$ FIXING $>$ NIPCHK, and press OK.
The nip width is correct if as indicated; otherwise, use the adjusting nut [1] to make adjustments.

Caution:

b and c are points 10 to 15 mm from paper ends.

Dimension	Measurements*
a	$7.3 \pm 0.3 \mathrm{~mm}$
$\|\mathrm{~b}-\mathrm{c}\|$	0.5 mm or less
$\mathrm{b}-\mathrm{a}$ $\mathrm{c}-\mathrm{a}$	0.5 mm or less

[^0]Figure 2-48

3 Orientation of the Cleaning Belt

Mount the fixing cleaning belt as shown .

Figure 2-49 Fixing Upper Cleaning Belt (rear view)

Figure 2-50 Fixing Lower Cleaning Belt (rear view)

Adjust the position so that the stroke [A] is $3 \pm 0.2 \mathrm{~mm}$ for the fixing paper solenoid and $4 \pm 0.2 \mathrm{~mm}$ for the lower fixing solenoid.

Figure 2-51

5

Points to Note When Replacing the Oil Coating Assembly

Caution:

1. The oil coating unit is adjusted and assembled at the factory, and must not be removed. Do not touch the screws [1] shown in the figure.
2. If you have replaced the oil felt, be sure to execute COPIER>OPTION> FIXING>PUMP-ON in service mode to impregnate it with fixing oil. Be sure to press the Stop key in about 10 min .

Figure 2-52 (rear)

Figure 2-53 (front)

F. Externals/Controls

1 Handling the Flywheel
The copier's flywheel [1] weighs 8 kg in total. Take extra care not to drop it during work. When holding it, be sure to support it on its left and right as shown.

Figure 2-54

G. Paper Deck

Mounting the Paper Level Indicator

If you have moved the paper level indicator drive belt behind the front cover or the deck lifter when removing the front cover, perform the following to correct its position:

1) Move down the deck lifter to the lower limit.
2) Move the drive belt [1] behind the front cover by hand lightly in the direction of the arrow until it stops (so that the white area in the window [2] increases).
3) Mount the front cover [3].

If you operate the deck without matching the paper level indicator and the deck lifter, you can damage the drive system of the paper level indicator. Exercise care.

2

Adjusting the Left/Right

 Registration of the DeckIf the left/right registration is $0 \pm 2.0 \mathrm{~mm}$, adjust the position of the latch plate [1] with two screws [2]. (At this time, use the graduation [3] on the latch plate as a guide.)

Figure 2-55

Figure 2-56

Figure 2-57

3
 Adjusting the Position of the Roll

Make adjustments using the four mounting screws [4] of the roll support plate [3] so that the roll [1] is about 3 mm from the floor [2] when the compartment is fully slid out.
(At this time, use the graduation [5] on the front side plate as a reference.)

4 Routing the Lifter Cable

1) Fix the lifter drive shaft and the lifter in place with a hex wrench [1] and a long screwdriver [2]
2) Fix the cable fixing plate [3] in place to the lifter with two screws.
3) Hook the lifter cable on the pulley [4].
4) Hook the ball of the lifter cable on the pulley [5] of the lifter drive shaft, and wind the cable along the groove about 1.5 turns. At this time, be sure that the lifter cable is taut until the long screwdriver used to keep it in position is lightly lifted.
5) In this condition, secure the pulley in place to the lifter drive shaft with two set screws [6].
6) Secure all pulleys to the lifter drive shaft; then, measure the distance from the base plate of the compartment to the top surface of the lifter to make sure that the lifter is level.

Figure 2-58

Figure 2-59

5

Orientation of the Deck Pickup

 RollerWhen mounting the deck pickup roller [1] at the front, be sure that the marking [2] on the collar (silver-colored) is at the copier's front and the marking [3] on the side of the roller is at the copier's rear.

When mounting the deck pickup roller [4], be sure that the marking [5] on its inside and the marking [6] on its collar (goldcolored) are at the copier's rear.

[1] Collar (silver-colored)

Figure 2-60

Figure 2-61

Figure 2-62

7
 Adjusting the Deck Separation Roller Pressure

If double feeding or pickup failure occurs when pickup is from the side paper deck, adjust the position of pressure spring of the deck separation roller.

- If pickup failure occurs, move the position of the spring in the direction of arrow A.
- If double feeding occurs, move the position of the spring in the direction of arrow B.

Figure 2-63

H. Electrical System

The copier's service mode is used to adjust its electrical mechanisms. Most of them are adjusted at the factory, and require high precision. As a rule, do not make those adjustments that are not discussed herein.

1 When Replacing the CPU PCB

1) Check the data of ADJUST and OPTION in service mode before replacement, and take notes. Or, back up the data using the downloading tool.
2) Remove the CPU PCB.
3) Mount the new CPU PCB.
4) Remove the three flash memories and the memory PCB from the old CPU PCB, and mount them to the new CPU PCB.
5) Turn on the power switch.
6) Select FUNCTION>CLEAR>DC-CON, R-CON and MMI-COPY in service mode; then, press the OK key.
7) Turn off and then on the power switch.
8) Enter the data you took notes of in step 1).
9) Execute FUNCTION>CCD>CCD-ADJ in service mode.
10) Turn off and then on the power switch.

2 When Replacing the Flash Memory on the CPU PCB

1) Check the data of ADJUST and OPTION in service mode before replacement, and take notes. Or, back up the data using the downloading tool.
2) Detach the old flash memory from the CPU PCB.
3) Mount the new flash memory to the CPU PCB.
4) Turn on the power switch.
5) Select FUNCTION>CLEAR>DC-CON, R-CON and MMI-COPY in service mode; then, press the OK key.
6) Turn off and then on the power switch.
7) Enter the data you took notes of in step 1).
8) Execute FUNCTION>CCD>CCD-ADJ in service mode.
9) Turn off and then on the power switch.

3 Adjusting the Laser Power

If you replaced the laser scanner unit, laser driver PCB, or laser controller PCB, enter the values attached to the PCB in service mode (ADJUST>LASER). Attach the label behind the right front cover for future reference.

If the output of the laser decreases, be sure to adjust the laser power.

- Laser power checker (FY9-4013)
- Digital multimeter (CK-0436)

Caution:

Check the values recorded on the label attached to the right front door.

1) Turn off the power switch.
2) Remove the copyboard glass; then, remove the lens base cover and the laser scanner cover.
3) Turn on the power switch.
4) Open the front left cover. Make sure the front left cover will not close.
5) Remove the left inside cover.
6) Remove the laser power checker inlet cover.
7) Set the laser power checker switch to ' 2 '.
8) Holding the laser power checker [1] so that its light-receiving face is on the right, fit it into the slot [2].
9) Insert the probe of the laser power checker into the digital multimeter, and set the range to 200 mV .
10) Select FUNCTION>ADJUST>POWER in service mode, and press OK. (laser output)
11) Check the reading of the digital multimeter.
12) Compare the reading (Pmax) indicated on the label and the measurement. If different, turn VR2 [3] on the laser driver PCB.

Figure 2-64

Figure 2-65

Caution:

1. Turn VR2 slowly while monitoring the output of the laser power checker so as to avoid increasing the laser power excessively. Turning VR2 counterclockwise will decrease the laser output.
2. Be sure not to exceed the value recorded on the label. Otherwise, the laser diode may become damaged.
3. Do NOT press the Copy Start key while making adjustments using VR2.
13) Press the Stop key to stop the laser output.
14) Adjust the laser.

4 Adjusting the Laser

Caution:

Be sure to adjust the laser power before starting the following work:

1) Select ADJUST>LASER in service mode.
2) Select T-V00 and enter ' 255 '; then, press OK.
3) Select T-V00-ON, and press OK. (The laser will turn on.) Take notes of the reading (offset). To stop the laser output, press the Stop key.
4) Select T-V00, and adjust T-V00 so that the following is true: offset value $+(0.15$ to 0.20 mV$)$
5) Likewise, adjust T-VFF, PE-V00, P3-VFF-1, P3-VFF-2, P3-VFF-3, and P3-VFF-4. To stop the laser output, press the Stop key. Study the following table for an idea of optimum output.

Item	Standard (mV)	Laser ON key
T-V00	Offset value $+(0.15$ to 0.2$)$	T-V00-ON
T-VFF	Pmax $\times 70 \%$	T-VFF-ON
P3-V00	Offset value $+(0.1$ to 0.15$)$	P3V00-ON
P3-VFF-1	Pmax $\times 45 \%$	P3-V1-ON
P3-VFF-2	Pmax $\times 55 \%$	P3-V2-ON
P3-VFF-3	Pmax $\times 65 \%$	P3-V3-ON
P3-VFF-4	Value on label $\times 70 \%$	P3-V4-ON

6) Press the Reset key to end service mode.
7) Turn off the power switch.
8) Detach the laser power checker, and secure the slot cover in place.
9) Mount the left inside cover.

When Replacing the Scanning Lamp, Standard White Plate, Lamp
 5 Regulator, Lamp Reflecting Plate, Analog Processor PCB, No. 1 Mirror Base Unit, No. 1 Mirror, No. 2 Mirror Base Unit, No. 2 Mirror, No. 3 Mirror, and CCD Unit

1) Close the front cover, and wait until the copier enters standby state. (Do not open the front cover while CCD-ADJ is being executed.)
2) Replace the part, and execute FUNCTION>CCD>CCD-ADJ in service mode.

When 'END' appears, end the operation. If 'ERR' appears, start over.
3) Turn off and then on the power switch.

6 When Replacing the BD Unit

If you have replaced the BD unit, adjust the position as follows:

1) Set the meter range to VAC.
2) Connect the + probe to the check pin (TP301) and the - probe to the check pin GND on the BD PCB.
3) Execute FUNCTION $>$ LASER $>$ POWER in service mode.
4) Loosen the screw used to secure the BD unit in place, and tighten it when the output reading of the meter is maximum.

7 Checking the Environment Measurement PCB

The environment measurement PCB and the environment sensor are checked using the environment measurement PCB checker (TKN-0457) and the environment sensor calibrator (TKN-0456).
a. Checking the Environment Measurement PCB

1) Turn off the power.
2) Open the hopper.
3) Remove the environment sensor from the environment measurement PCB, and fit the environment measurement PCB checker (TKN-0457) in its place.
4) Insert the door switch actuator, and turn on the power.
5) Set the meter range to 30 VDC .

Check to make sure that the voltage between J1-1 (+) and J1-2 (-) on the environment measurement PCB is $24 \pm 2.4 \mathrm{~V}$. If not, check the DC power supply PCB(DCP1).
6) Select DISPLAY>ANALOG in service mode.
7) Check the temperature and the humidity on the ANALOG screen.

TEMP: $\quad 25 \pm 5^{\circ} \mathrm{C}$
ABS-HUM: $40 \pm 10 \%$
8) Check to make sure that the reading is as indicated.

If no, go to step 9).
If yes, go to step 14).
9) Press the Reset key, and turn off the power switch.
10) Disconnect the connector J 1 of the environment measurement PCB.
11) Turn on the power switch.
12) Check the temperature and the humidity on the DISPLAY>ANALOG screen in service mode. TEMP: $\quad 25 \pm 5^{\circ} \mathrm{C}$ ABS-HUM: $36 \pm 10 \%$
13) Check to see that the reading is as indicated. If not, suspect a fault on the DC driver PCB or the CPU PCB.
14) Press the Reset key.
15) Turn off the power switch.
16) Connect the connector J 1 to the environment measurement PCB.
17) Detach the environment measurement PCB checker from the environment measurement PCB , and connect the environment sensor in its place.
18) Attach all covers.
b. Checking the Environment Sensor

1) Check the environment measurement PCB.
2) Turn on the power switch, and leave the copier alone for 5 min .
3) Check the temperature and the humidity on the DISPLAY>ANALOG screen in service mode, and record the readings. (data A)
TEMP: ${ }^{\circ} \mathrm{C}$ data A1
ABS-HUM: \% data A2
4) Press the Reset key, and turn off the power switch.
5) Detach the environment sensor from the environment measurement PCB, and insert the environment sensor calibration tool (TKN-0456) in its place.
6) Turn on the power switch, and leave the copier alone for 5 min .
7) Check the temperature and the humidity on the DISPLAY>ANALOG screen in service mode, and take notes of them.
TEMP: ${ }^{\circ} \mathrm{C}$ data B1
ABS-HUM: \% data B2
8) Compare data A and data B.

- difference between data A 1 and data B 1 is 0 ± 5.
- difference between data A 2 and data B 2 is 0 ± 20

If the difference between data A and data B is not as indicated, replace the environment sensor.
9) Press the Reset key, and turn off the power switch.
10) Detach the environment sensor calibrating tool from the environment measurement PCB, and fit the environment sensor.
11) Mount all covers.

Caution:

The environment sensor calibration tool (TN-0456) is adjusted at the factory to high precision. Be sure to store it in an airtight container with a drying agent for storage.

8 Registering the Cassette/Multifeeder Paper Width Basic Value

Perform what follows below for the following:

- If you have replaced the copier's paper width detecting VR (including the multifeeder).
- If you have adjusted the front/rear registration of the cassette.

You need to register a paper width basic value of STMTR and A4R for each cassette; for the multifeeder, you must register A6R, A4R, and A4.
a. Cassette

1) Slide out the cassette for which you want to register the basic value, and set the paper width guide inside the cassette to A4R.
2) Set the cassette in the copier.
3) Select FUNCTION $>$ CST in service mode.
4) Select a size (C1-A4R, C2-A4R, C3-A4R) for the cassette in question, and press OK.
5) See that basic value 1 has been registered.
6) Slide out the cassette for which you want to register a basic value, and set the paper width guide plate inside the cassette to STRMTR.
7) Set the cassette in the copier.
8) Select FUNCTION $>$ CST in service mode.
9) Select a size (C1-STMTR, C2-STMTR, C3-STMTR) for the cassette in question, and press OK.
10) See that basic value 2 has been registered.
11) Set the cassette to the size desired by the user.
b. Multifeeder
12) Set the width of the multifeeder guide plate to A6R (105 mm).
13) Select service mode FUNCTION>CST.
14) Select MF-A6R for which you want to register a basic value, and press OK.
15) See that basic value 1 has been registered.
16) Set the width of the multifeeder guide plate to $A 4 R(210 \mathrm{~mm})$.
17) Select MF-A4R for which you want to register a basic value, and press OK.
18) See that basic value 2 has been registered.
19) Set the width of the multifeeder guide plate to A4 (297 mm).
20) Select MF-A4 for which you want to register a basic value, and press OK.
21) See that basic value 3 has been registered.

Caution:

After registering basic values, be sure to record the values on the service label.

9 Checking the Surface Potential System

If an image fault has occurred, you must be sure if the cause is in the static latent image formation block (including the photosensitive drum and the potential control system) or the developing/transfer system. To that end, the surface potential must be checked as follows:
a. Checking the Surface Potential

1) Select FUNCTION $>$ DPC $>$ DPC in service mode (for potential control).
2) Check the following using DISPLAY $>$ DPOT in service mode.

Screen display	Guide
V00-500	430 to 570
V00-700	600 to 800
VFF-500	50 to 150
VFF-700	100 to 200

3) If the value is not as indicated, make a zero-level check.

b. Zero-Level Check

You can make use of a zero-level check to see whether the surface potential control circuit is good or not, thereby finding out whether the level shift circuit of the DC driver PCB and the potential measurement unit is good or not.

Reference:

A zero-level check is designed to find out whether the CPU reads the surface potential of the drum as ' 0 ' when it is 0 V .

A zero-level check may be either of the following two:
Method 1: to find out whether the level shift circuit on the DC driver PCB is good or not Method 2: to find out whether the potential measurement circuit is good or not

Method 1

1) Remove the rear cover.
2) Turn on the power switch, and wait until the copier is in standby state.
3) Disconnect the connector J 4 (J440) of the potential measurement PCB.
4) Short the check pins J1040-1 and -2 on the DC driver PCB with a jumper wire.
5) Check to make sure that the reading of DISPLAY $>$ DPOT $>$ DPOT is $100 \pm 30 \mathrm{~V}$ in service mode.
If yes, the part is normal. Go to step 8).
6) Measure the voltage between GND CP and CP4 of the DC driver PCB to see if it is 0.49 ± 0.1 V.

If no, suspect a fault in the level shift circuit on the DC driver PCB. If yes, suspect a fault in the A/D converter on the CPU PCB.
7) Turn off the power switch, and disconnect the jumper wire; then, connect the connector.
8) Mount the rear cover, and turn on the power switch.

Method 2

1) Turn off the power switch.
2) Remove the photosensitive drum unit.
3) Fit the potential sensor electrode (TKN-0197) to the potential sensor.

Caution:

When fitting the potential sensor electrode to the potential sensor, make sure that magenta of the electrode will not come into contact with the potential sensor base.
4) Attach the clip of the jumper line to the potential sensor electrode.

Caution:

Be sure NOT to let the clip come into contact with the sensor cover. Further, be sure to allow enough distance from the sensor window.
5) Connect one end of the jumper wire to the copier's chassis metal plate (GND) of the copier.
6) Insert the door switch actuator into the door switch assembly.
7) Turn on the power switch.

After turning on the power switch, do NOT touch the potential sensor assembly.
8) Check to make sure that DISPLAY $>$ DPOT $>$ DPOT is $100 \pm 30 \mathrm{~V}$ in service mode.

Reference:

If the reading is as indicated in method 1 but not as indicated in method 2 , suspect dirt on the sensor or a fault in the potential measurement unit.
If the reading is not as indicated in method 1 and method 2, you may assume that the signal path from the potential sensor unit to the CPU on the CPU PCB is normal.
9) Turn off the power switch.
10) Detach the potential sensor electrode.
11) Mount the photosensitive drum unit.
12) Turn on the power switch.

10 When Replacing the DC Driver PCB

Check the setting of the DIP switch on the old DC driver PCB, and set the DIP switch on the new DC driver PCB.

In addition, be sure to remove the jumper connector J1050 from the old DC driver PCB, and connect it to J1050 of the new DC driver PCB.

11 Checking the Photointerrupter

The copier allows the use of its service mode when checking its photointerrupers in addition to the use of a conventional meter.

1. Using a Meter
1) Set the meter range to 30 VDC .
2) Connect the - probe of the meter to J101-7 (GND) on the DC driver PCB or J3-3 (GND) on the deck driver PCB.
3) Connect the (+) probe of the meter to the terminals (on the driver PCB) indicated on the pages that follow.
4) Make checks as shown.
2. Using Service Mode
1) Select I/O DISPLAY in service mode.
2) Bring up the I/O address to check, and make checks as shown.

Sensor	Connector No. I/O address	Checks		$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \text { display } \end{gathered}$	Voltage reading
PS1 Original scanner HP sensor	J602-2	Move the scanner by hand while in standby.	When the lightblocking plate is at PS1, While the lightblocking plate is not at PS1,	--	5 V 0 V
$\begin{aligned} & \text { PS2 } \\ & \text { Side A sensor } \end{aligned}$	$\begin{aligned} & \text { J1014-B8 } \\ & \text { P009-8 } \end{aligned}$	Move the transfer drum by hand while in standby.	When the lightblocking plate is at PS2, When the lightblocking plate is not at PS2,	0	5 V 0 V
PS3 Side B sensor	$\begin{aligned} & \text { J1014-B7 } \\ & \text { P009-9 } \end{aligned}$	Move the transfer drum by hand while in standby.	When the lightblocking plate is at PS3, When the lightblocking plate is not at PS3,	0	0 V 5 V
PS4 C sensor	$\begin{aligned} & \text { J1014-B5 } \\ & \text { P009-10 } \end{aligned}$	Move the transfer drum by hand while in standby.	When the light-blocking-plate is at PS4, When the lightblocking plate is not at PS4,	0	5 V 0 V
PS5 Pre-transfer sensor	$\begin{aligned} & \text { J1014-B3 } \\ & \text { P001-9 } \end{aligned}$	Put paper on the transfer drum and move it by hand while in standby.	When paper is present over PS5, When paper is absent over PS5,	0	5 V 0 V
PS6 Post-transfer sensor	$\begin{aligned} & \text { J1014-B2 } \\ & \text { P001-10 } \end{aligned}$	Put paper over PS6 while in standby.	When paper is present over PS6, When paper is absent over PS6,	0	5 V 0 V
PS7 Separation sensor	$\begin{aligned} & \text { J10013-B4 } \\ & \text { P001-11 } \end{aligned}$	Put paper over PS7 while in standby.	When paper is present over PS7, When paper is absent over PS7,	0	5 V 0 V
PS8 Attraction/ transfer locking cam HP sensor	$\begin{aligned} & \text { J1014-B1 } \\ & \text { P009-3 } \end{aligned}$	Take measurements during copying operation.	When cam is not at HP, When cam is at HP,	0	5 V 0 V
PS9 Multifeeder pickup sensor	$\begin{aligned} & \text { J1017-B10 } \\ & \text { P001-5 } \end{aligned}$	Put paper over PS9 while in standby.	When paper is present over PS9, When paper is absent over PS9,	0	5 V 0 V
PS10 Fixing oil level sensor	$\begin{aligned} & \text { J1004-B5 } \\ & \text { P006-4 } \end{aligned}$	Remove PS10 while in standby.	When oil is present, When oil is absent,	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$

Sensor	Connector No. I/O address	Checks		I/O display	Voltage reading
PS11 Fixing upper cleaning belt length sensor	J1004-B2 P006-3	Put paper over PS11 while in standby.	When paper is present over PS11, PS12	When paper is absent over PS11,	0

Sensor	Connector No. I/O address	Checks		$\begin{gathered} \text { I/O } \\ \text { display } \end{gathered}$	Voltage reading
PS25/DPS25 Cassette 3/2 paper sensor	$\begin{aligned} & \hline \text { J1018-A5 } \\ & \text { P002-8 } \end{aligned}$	Put paper over PS25 while in standby.	When paper is present over PS25, When paper is absent over PS25,	0	5 V 0 V
PS26 Pickup vertical path 2/1 sensor	$\begin{array}{\|l} \text { J1017-A4 } \\ \text { P001-1 } \end{array}$	Put paper over PS26 while in standby.	When paper is present over PS26, When paper is absent over PS26,	0	5 V 0 V
PS27 Pickup vertical path 3/2 sensor	$\begin{aligned} & \text { J1018-A2 } \\ & \text { P001-2 } \end{aligned}$	Put paper over PS27 while in standby.	When paper is present over PS27, When paper is absent over PS27,	1 0	5 V 0 V
PS28 (CLC1150) Re-pickup vertical path sensor	$\begin{aligned} & \text { J1019-A2 } \\ & \text { P001-3 } \end{aligned}$	Put paper over PS28 while in standby.	When paper is present over PS28, When paper is absent over PS28,	1 0	5 V 0 V
PS30 Pre- registration sensor	$\begin{aligned} & \text { J1013-B6 } \\ & \text { P002-15 } \end{aligned}$	Put paper over PS30 while in standby.	When paper is present over PS30, When paper is absent over PS30,	1 0	5 V 0 V
PS31 External delivery sensor	$\begin{array}{\|l} \text { J1008-B2 } \\ \text { P001-12 } \end{array}$	Put paper over PS31 while in standby.	When paper is present over PS31. When paper is absent over PS31,	0	5 V 0 V
PS32 (CLC1150) Delivery vertical path 1 sensor	$\begin{array}{\|l\|l} \text { J1029-6 } \\ \text { P002-0 } \end{array}$	Put paper over PS32 while in standby.	Paper is present over PS32, Paper is absent over PS32,	1 0	5 V 0 V
PS33 (CLC1150) Delivery vertical path 2 sensor	$\begin{aligned} & \text { J1029-11 } \\ & \text { P002-1 } \end{aligned}$	Put paper over PS33 while in standby.	When paper is present over PS33, When paper is absent over PS33,	0	5 V 0 V
PS34 (CLC1150) Duplexing path paper sensor	$\begin{array}{\|l} \mathrm{J} 1022-\mathrm{B} 8 \\ \text { P002-3 } \end{array}$	Put paper over PS34 while in standby.	When paper is present over PS34, When paper is absent over PS34,	0	5 V 0 V
PS35 (CLC1150) Duplexing reversal paper sensor	$\begin{aligned} & \text { J1022-B7 } \\ & \text { P002-4 } \end{aligned}$	Put paper over PS35 while in standby.	When paper is present over PS35, When paper is absent over PS35,	1	5 V 0 V
PS36 (CLC1150) Duplexing tray paper sensor	$\begin{aligned} & \text { J1022-B6 } \\ & \text { P002-11 } \end{aligned}$	Put paper over PS36 while in standby.	When paper is present over PS36, When paper is absent over PS36,	0 1	0V 5 V

Sensor	Connector No. I/O address	Checks		$\begin{gathered} \text { I/O } \\ \text { display } \end{gathered}$	Voltage reading
PS37 (CLC1150) Duplexing inlet paper sensor	$\begin{aligned} & \text { J1022-A3 } \\ & \text { P002-2 } \end{aligned}$	Put paper over PS37 while in standby.	When paper is present over PS37, When paper is absent over PS37,	1 0	5 V 0 V
PS40 (CLC1150) Paper jogging guide HP sensor	$\begin{aligned} & \text { J1022-A4 } \\ & \text { P009-4 } \end{aligned}$	Move the guide while in standby.	While the guide is present over PS40, While the guide is absent over PS40,	0	5 V 0 V
PS41 Right front cover sensor	$\begin{aligned} & \text { J1027-B8 } \\ & \text { P004-1 } \end{aligned}$	Open and close the cover while in standby.	When the cover is closed, When the cover is open,	0	5 V 0 V
PS42 Left front cover sensor	$\begin{aligned} & \text { J1027-A8 } \\ & \text { P004-2 } \end{aligned}$	Open and then close the cover while in standby.	When the cover is closed, When the cover is open,	1	$\begin{aligned} & 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$
PS43 Delivery cover sensor	$\begin{aligned} & \text { J1027-B2 } \\ & \text { P004-0 } \end{aligned}$	Open and then close the cover while in standby.	When the cover is closed, When the cover is open,	0	$\begin{aligned} & 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$
PS44 Pickup cover sensor	J1007-B5 P004-3	Open and close the cover while in standby.	When the cover is closed, When the cover is open,	1 0	5 V 0 V
PS46 (CLC120/ 1130) Cassette 1 open/closed sensor	$\begin{aligned} & \text { J1020-B2 } \\ & \text { P008-3 } \end{aligned}$	Open and close the cassette while in standby.	When the cassette is closed, When the cassette is open,	0	5 V 0 V
PS47/DPS47 Cassette 2/1 open/closed sensor	J1017-A3 P008-2	Open and close the cassette while in standby.	When the cassette is closed, When the cassette is open,	1 0	5 V 0 V
PS48/DPS48 Cassette 3/1 open/closed sensor	$\begin{array}{\|l\|} \hline \text { J1018-A1 } \\ \text { P008-1 } \end{array}$	Open and close the cassette while in standby.	When the cassette is closed, When the cassette is open,	0	5 V 0 V
PS49 M developing assembly HP sensor	J1016-B2 P00A-8	Take measurements during copying operation.	When at HP, When not at HP,	0	$\begin{aligned} & 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$
PS51 C developing assembly HP sensor	$\begin{aligned} & \text { J1015-A3 } \\ & \text { P00A-9 } \end{aligned}$	Take measurements during copying operation.	When at HP, When not at HP,	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$

Sensor	Connector No I/O address	Checks		$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \text { display } \end{gathered}$	Voltage reading
PS53 Y developing assembly HP sensor	$\begin{aligned} & \text { J1016-A2 } \\ & \text { P00A-10 } \end{aligned}$	Take measurements during copying.	When at HP, When not at HP,	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$
PS55 Bk developing assembly HP sensor	$\begin{aligned} & \text { J1015-B3 } \\ & \text { P00A-11 } \end{aligned}$	Take measurements during copying operation.	When at HP, When not at HP,	1	$\begin{aligned} & 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$
PS57 Transfer drum HP sensor	$\begin{array}{\|l} \text { J1002-A2 } \\ \text { P009-1 } \end{array}$	Take measurements during copying.	When at HP, When not at HP,	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$
PS59 Transfer drum cleaner HP sensor	$\begin{aligned} & \text { J1002-B2 } \\ & \text { P009-2 } \end{aligned}$	Take measurements during copying operation.	When at HP, When not at HP,	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$
PS62 Multifeeder tray open/ closed sensor	$\begin{aligned} & \text { J1017-B9 } \\ & \text { P004-6 } \end{aligned}$	Open and close the tray during standby.	When the tray is closed, When the tray is open,	0	0 V 4 V
PS67 Fixing lower cleaning belt length sensor	$\begin{aligned} & \text { J1004-B1 } \\ & \text { P006-2 } \end{aligned}$	Put paper over PS67 while in standby.	When paper is present over PS67, When paper is absent over PS67,	0	5 V 0 V
PS68 Waste toner case full sensor	$\begin{array}{\|l} \text { J1027-B4 } \\ \text { P006-6 } \end{array}$	Put paper over PS68 while in standby.	When paper is present over PS68, When paper is absent over PS68,	0	0 V 5 V
PS69 (Note) Transparency sensor	$\begin{aligned} & \text { J1013-B9 } \\ & \text { P001-6 } \end{aligned}$	Take measurements during copying operation.	When paper is present over PS69, When pepper is absent over PS69,	0	5 V 0 V
PS70 (Note) Registration sensor	$\begin{aligned} & \text { J1013-B8 } \\ & \text { P001-8 } \end{aligned}$	Take measurements during copying operation.	When paper is present over PS70, When paper is absent over PS70,	1 0	5 V 0 V
PS71 (Note) Pre-cleaning paper sensor	$\begin{array}{\|l} \text { J1007-B14 } \\ \text { P00B-1 } \end{array}$	Take measurements during copying operation.	When paper is present over PS71, When paper is absent over PS71,	1 0	several V 0 V
PS 101 Deck pickup sensor	$\begin{aligned} & \text { J5-B4 } \\ & \text { P001-4 } \end{aligned}$	Put paper over PS101 while in standby.	When paper is present over PS101, When paper is absent over PS101,	0	5 V 0 V
PS102 Deck paper absent sensor	$\begin{array}{\|l\|} \hline \text { J5-A4 } \\ \text { P002-12 } \end{array}$	Put paper over PS102 while in standby.	When paper is present over PS102, When paper is absent over PS102,	1 0	$\begin{aligned} & 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$

Note: The sensor detects paper after the LED of the sensor turns on; normally, ' 1 ' is indicated, since the LED is not ON.

Sensor	Connector No. I/O address	Checks		$\begin{gathered} \text { I/O } \\ \text { display } \end{gathered}$	Voltage reading
PS103 Deck lifter upper limit sensor	$\begin{aligned} & \hline \text { J5-A7 } \\ & \text { P007-13 } \end{aligned}$	Put the light-blocking plate while in standby.	When the lightblocking plate is pushed, When the lightblocking plate is not pushed,	0 1	5 V 0 V
PS104 Deck lifter position sensor 18	J5-------	Push the lightblocking plate while in standby.	When the lightblocking plate is pushed, When the lightblocking plate is not pushed,	- -	5 V 0 V
PS105 Deck set sensor	$\begin{aligned} & \text { J6-4 } \\ & \text { P016-14 } \end{aligned}$	Push the lightblocking plate while in standby.	When the lightblocking plate is pushed, When the lightblocking plate is not pushed,	0 1	5 V 0 V
PS107 Deck paper level upper sensor	J4-5 P016-12	Push the lightblocking plate while in standby.	When the lightblocking plate is pushed, When the lightblocking plate is not pushed,	0 1	5 V 0 V
PS108 Deck paper level lower sensor	$\begin{aligned} & \mathrm{J} 4-2 \\ & \mathrm{P} 016-11 \end{aligned}$	Push the lightblocking plate while in standby.	When the lightblocking plate is pushed, When the lightblocking plate is not pushed,	0 1	5 V 0 V
PS109 Deck open sensor	$\begin{aligned} & \text { J6-7 } \\ & \text { P016-15 } \end{aligned}$	Release the deck assembly while in standby.	When the deck assembly is open, When the deck assembly is closed,	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 5 \mathrm{~V} \end{aligned}$

CHAPTER 3 ARRANGEMENT AND FUNCTIONS OF ELECTRICAL PARTS

A. Sensors

1. CLC1120/1130

PS1	Original scanner home position
sensor	
PS2	Side A sensor
PS3	Side B sensor
PS4	C sensor
PS5	Pre-transfer paper sensor
PS6	Post-transfer paper sensor
PS7	Separation sensor
PS8	Attraction/transfer locking cam HP sensor PS9
Multifeeder pickup sensor	
PS10	Fixing oil level sensor
PS11	Fixing upper cleaning belt level
	sensor
PS12	Internal delivery sensor
PS15	Multifeeder paper sensor
PS17	Multifeeder lifter H sensor
PS18	Multifeeder lifter L sensor
PS19	Cassette 1 lifter position sensor
PS20	Cassette 1 paper sensor
PS21	Pickup vertical path 1 sensor
PS22	Cassette 2 lifter position sensor
PS23	Cassette 3 lifter position sensor
PS24	(CLC1130 only)
Cassette 2 paper sensor	
PS25	Cassette 3 paper sensor (CLC1130
only)	
PS26	Pickup vertical path 2 sensor
PS27	Pickup vertical path 3 sensor
(CLC1130 only)	
PS30	Pre-registration sensor
PS31	External delivery sensor

Table 3-1a (CLC1120/1130)

Figure 3-1a (CLC1120/1130)

PS41	Right front cover sensor
PS42	Left front cover sensor
PS43	Delivery cover sensor
PS44	Pickup cover sensor
PS46	Cassette 1 open/closed sensor
PS47	Cassette 2 open/closed sensor
PS48	Cassette 3 open/closed sensor (CLC1130 only)
PS49	M developing assembly HP sensor
PS51	C developing assembly HP sensor
PS53	Y developing assembly HP sensor
PS55	Bk developing assembly HP sensor
PS57	Transfer drum HP sensor
PS59	Transfer drum cleaner HP sensor
PS62	Multifeeder tray open/closes sensor
PS67	Fixing lower cleaning belt length sensor
PS68L/S	Waste toner case full sensor
PS69L/S	Transparency sensor
PS70L/S	Registration sensor
PS71	Pre-cleaning paper sensor
PSU2	Cassette 2 paper length sensor (CLC1120 only)
PSU3	Cassette 3 paper length sensor (CLC1130 only)
VR2	Cassette 1 paper level detecting VR
VR3	Cassette 2 paper width detecting VR (CLC1120 only)
VR4	Cassette 2 paper level detecting VR
VR5	Cassette 3 paper width detecting VR (CLC1130 only)
VR6	Cassette 3 paper level detecting VR (CLC1130 only)
VR7	Multifeeder paper width detecting VR
TS1	M toner level sensor
TS2	C toner level sensor
TS3	Y toner level sensor
TS4	Bk toner level sensor
UN10	Environment sensor

Table 3-1b (CLC1120/1130)

Table 3-1b (CLC1120/1130)

2. CLC1150

PS1	Original scanner home position sensor
PS2	Side A sensor
PS3	Side B sensor
PS4	C sensor
PS5	Pre-transfer paper sensor
PS6	Post-transfer paper sensor
PS7	Separation sensor
PS8	Attraction/transfer locking cam HP sensor
PS9	Multifeeder pickup sensor
PS10	Fixing oil level sensor
PS11	Fixing upper cleaning belt length sensor
PS12	Internal delivery sensor
PS15	Multifeeder paper sensor
PS17	Multifeeder lifter H sensor
PS18	Multifeeder lifter L sensor
DPS22	Cassette 1 lifter position sensor
DPS23	Cassette 2 lifter position sensor
DPS24	Cassette 1 paper sensor
DPS25	Cassette 2 paper sensor
PS26	Pickup vertical path 1 sensor
PS27	Pickup vertical path 2 sensor
PS28	Re-picup vertical path sensor
PS30	Pre-registration sensor
PS31	External delivery paper sensor
PS32	Delivery vertical path 1 sensor
PS33	Delivery vertical path 2 sensor
PS34	Duplexing path paper sensor
PS35	Duplexing reversal paper sensor
PS36	Duplexing tray paper sensor

Table 3-2a (CLC1150)

Figure 3-2a (CLC1150)

PS37	Duplexing inlet paper sensor
PS40	Paper jogging guide HP sensor
PS41	Right front cover sensor
PS42	Left front cover sensor
PS43	Delivery cover sensor
PS44	Pickup cover sensor
DPS47	Cassette 1 open/closed sensor
DPS48	Cassette 2 open/closed sensor
PS49	M developing assembly HP sensor
PS51	C developing assembly HP sensor
PS53	Y developing assembly HP sensor
PS55	Bk developing assembly HP sensor
PS57	Transfer drum HP sensor
PS59	Transfer drum cleaner HP sensor
PS62	Multifeeder tray open/closed
	sensor
PS67	Fixing lower cleaning belt length
	sensor
PS68L/S	Waste toner case full sensor
PS69L/S	Transparency sensor
PS70L/S	Registration sensor
PS71	Pre-cleaning paper sensor
DPSU3	Cassette 2 paper length sensor
DVR4	Cassette 1 paper level detecting
DVR5	VR
	Cassette 2 paper width detecting
DVR6	VR
	Cassette 2 paper level detecting
VR7	Multifeeder paper width detecting
	VR
TS1	M toner level sensor
TS2	C toner level sensor
TS3	Y toner level sensor
TS4	Bk toner level sensor
UN10	Environment sensor

Table 3-2b (CLC1150)

Figure 3-2b (CLC1150)

B. Thermistors, Lamps, and Heaters

THM1	Fixing upper thermistor 1
THM2	Fixing upper thermistor 2
THM3	Fixing lower thermsitor 3
THM4	Fixing lower thermistor 4
TP1	Scanner thermal switch 1
TP2	Fixing upper thermal switch
TP3	Fixing lower thermal switch
TP6	Scanner thermal switch 2
LA1	Pre-exposure lamp
LA2	Scanning lamp
H1	Fixing upper heater
H2	Fixing lower heater
H3	Drum heater
H4	Cassette heater 1
H5	Cassette heater 2
ELB	Leakage breaker
LF1	Noise filer
SSR1	Fixing heater SSR
SSR2	Drum, cassette, deck heater SSR
RL1	AC power cut relay
RL3	DC power cut relay
P1	Power cord
SW1	Power switch
SW2	Control switch
SW3	Transfer unit lever switch
SW4	Left front door switch
SW5	Delivery door switch
SW6	Environment switch
SW7	Waste toner feedscrew locked
SW8	detecting switch
Cassette heater switch	

Figure 3-3

C. Clutches

1. CLC1120/1130

CL1	M developing cylinder clutch
CL2	C developing cylinder clutch
CL3	Y developing cylinder clutch
CL4	Bk developing cylinder clutch
CL5	M toner supply clutch
CL6	C toner supply clutch
CL7	Y toner supply clutch
CL8	Bk toner supply clutch
CL9	Registration clutch
CL10	Multifeeder feeding clutch
CL11	Cassette 1 pickup clutch CL12 Cassette 2 pickup clutch
CL13	Cassette 3 pickup clutch (CLC1130 only)
CL16	Multifeeder pickup clutch CL18Postcard feeding clutch (100-V model only)

Table 3-4 (CLC1120/1130)

Figure 3-4 (CLC1120/1130)

2. CLC1150

CL1	M developing cylinder clutch
CL2	C developing cylinder clutch
CL3	Y developing cylinder clutch
CL4	Bk developing cylinder clutch
CL5	M toner supply clutch
CL6	C toner supply clutch
CL7	Y toner supply clutch
CL8	Bk toner supply clutch
CL9	Registration clutch
CL10	Multifeeder feeding clutch
DCL12	Cassette 1 pickup clutch
DCL13	Cassette 2 pickup clutch
CL14	Duplexing feeding clutch
CL15	Re-pickup clutch
CL16	Multifeeder pickup clutch
CL18	Postcard feeding clutch (100-V model only) CL19
Delivery vertical path roller clutch	

Figure 3-5 (CLC1150)

D. Solenoids

1. CLC1120/1130

SL1	Fixing upper cleaning belt solenoid
SL2	Fixing lower cleaning belt solenoid
SL3	Separation push-up solenoid
SL4	Separation claw solenoid
SL5	Registration roller releasing solenoid
SL6	Attraction roller solenoid
SL7	Pickup roller 1 solenoid
SL8	Pickup roller 2 solenoid
SL9	Pickup roller 3 solenoid (CLC1130 only) SL14

Table 3-6 (CLC1120/1130)

Figure 3-6 (CLC1120/1130)

2. CLC1150

SL1	Fixing upper cleaning belt solenoid
SL2	Fixing lower cleaning belt solenoid
SL3	Separation push-up solenoid
SL4	Separation claw solenoid
SL5	Registration roller releasing solenoid
SL6	Attraction roller solenoid
DSL8	Pickup roller 1 solenoid
DSL9	Pickup roller 2 solenoid
SL10	Delivery paper deflecting plate solenoid
SL12	Stopper plate solenoid SL13 DLuplexing paper feed roller solenoid
SL15	Multifeeder pickup solenoid Stacking guide plate solenoid

Table 3-7 (CLC1150)

Figure 3-7 (CLC1150)

E. Fans

FM1	Original exposure system cooling fan 1
FM2	Exhaust discharge fan
FM3	Primary charging assembly fan
FM4	Laser scanner motor cooling fan
FM5	Ozone suction fan
FM6	Toner suction fan
FM7	IP cooling an
FM8	Electrical unit cooling fan
FM9	Power supply cooling fan 1
FM11	Delivery cooling fan
FM13	Power supply cooling fan 2
FM14	Original exposure system cooling fan 2
FM15	Original exposure system cooling fan 3
FM16	Back suction fan
FM17	Power cord mount cooling fan

Table 3-8

Figure 3-8

F. Motors

M2	Drum motor
M3	Laser scanner motor
M4	Main motor
M5	Fixing motor
M6	Primary charging wire cleaning motor
M7	Cleaning blade reciprocating motor
M8	Transfer drum cleaning brush
motor	
M9	Polishing roller motor
M10	Hopper motor
M11	Cassette 1 lifter motor
M12	Cassette 2 lifter motor
M13	Cassette 3 lifter motor (CLC1130 only) M15
Multifeeder lifter motor	
PM1	M developing assembly locking
motor	
PM2	C developing assembly locking motor
PM3	Y developing assembly locking motor
PM4	Bk developing assembly locking motor
PM5	Transfer drum locking motor
PM6	Transfer drum cleaner locking
PM7	motor
Attraction/transfer locking cam	
motor	
PM8	Pre-registration motor 2
PM9	Pre-registration motor 1
PM10	Cassette 1 pickup motor
PM11	Cassette 2 pickup motor
PM12	Cassette 3 pickup motor (CLC130 only) PM15
Original scanner motor	

Table 3-9 (CLC1120/1130)

Figure 3-9 (CLC1120/1130)

M2	Drum motor
M3	Laser scanner motor
M4	Main motor
M5	Fixing motor
M6	Primary charging wire cleaning motor M7
M8	Cleaning blade reciprocating motor
M9	Transfer drum leaner brush motor
M10	Holishing roller motor
DM12	Casserte 1 lifter motor
DM13	Cassette 2 lifter motor
M14	Duplexing motor
M15	Multifeeder lifter motor
PM1	M developing assembly locking
Potor	
PM2	C developing assembly locking
PM3	motor
Y developing assembly locking	
PM4	motor
Bk developing assembly locking	
motor	
PM6	Transfer drum cleaner locking
PM7	motor
Attraction/transfer locking cam	
PM8	motor
Pre-registration motor 2	
PM9	Pre-registration motor 1
DPM11	Cassette 1 pickup motor
DPM12	Cassette 2 pickup motor
PM13	Re-pickup motor
PM14	Duplexing paper jogging motor
PM15	Original scanner motor

Table 3-10 (CLC1150)

Figure 3-10 (CLC150)

G. PCBs

1	CPU PCB
2	CCD/CCD driver PCB
3	Analog processor PCB
4	Image processor motherboard
5	Image processor main PCB
6	Image processor ECO PCB
7	ECO relay PCB
8	Laser controller PCB
9	Laser drive PCB
10	BD PCB
11	Original scanner motor driver PCB
12	Control panel PCB
13	Inverter PCB
14	Contrast VR PCB
15	Keypad PCB
16	ECO PCB
17	Memory PCB
18	Bi-Centronics I/F PCB
19	DC driver PCB
20	DC power supply PCB
21	AC fuse PCB
22	DC fuse PCB
23	Drum heater controller PCB
24	Oil pump driver PCB
25	Transfer driver PCB
26	Registration path driver PCB
27	Pickup driver PCB
28	Duplexing driver PCB (CLC1150
29	only)
29	Developing assembly locking
30	driver PCB
	Transfer assembly locking driver

Table 3-11a

Figure 3-11a

31	Developing bias PCB
32	HVT-AC PCB
33	HVT-DC PCB
34	Potential measurement PCB
35	Main motor driver PCB
36	Laser scanner motor PCB
37	Hopper motor PCB
38	IP-ED/IF PCB (accessory)
39	IP-PRJ PCB (accessory)
40	Flicker controller PCB (230-V
41	model only)

Figure 3-11b

H. Paper Deck

1. Sensors and Switches

PS101	Deck pickup sensor
PS102	Deck paper absent sensor
PS103	Deck lifter upper limit sensor
PS104	Deck position sensor
PS105	Deck set sensor
PS107	Deck paper level upper sensor
PS108	Deck paper level lower sensor
PS109	Deck open sensor
SW100	Deck open switch
SW101	Deck open detecting switch
SW102	Deck lifter lower limit detecting
	switch

Table 3-12

Figure 3-12

2. Motors, Clutches, Solenoids, and PCBs

PM101	Deck pickup motor
M101	Deck lifter motor
CL102	Deck pickup clutch
SL101	Deck pickup solenoid
SL102	Deck open solenoid
$[1]$	Deck driver PCB
$[2]$	Deck open switch PCB

Table 3-13

Figure 3-13

I. Variable Resistors (VR), Light-Emitting Diodes (LED), and Check Pins by PCB

Of the variable resistors (VR), light-emitting diodes (LED), and check pins used in the copier, those that may be used in the field are discussed.

Caution:

1. Some LEDs emit light even when off because of leakage current. It is a normal condition, and must be kept in mind.
2. VRs that may be used in the field:

VRs that must not be used it the field:
3. The VRs and check pins that are not found in the tables are for the factory only, and require special tools and high accuracy. Do NOT touch them in the field.

1. DC Driver PCB

Figure 3-14
LED: turns on when +24 V is supplied, and turns off when the front cover is opened.

SW1-1	SW1-2	OUT	Remarks
OFF	OFF	Normal	Normal area
ON	OFF	Case 1	Highland 1
OFF	ON	Case 2	Highland 2
ON	ON	Not used	

Table 3-14

Caution:

If the copier is used in highlands (low atmospheric pressure), images may suffer from transfer faults. Try changing the setting of the DIP switch (SW1) to highland 1, and see if the problem is corrected; if the problem still occurs, switch SW1 to highland 2.
If the problem still remains thereafter, shift SW1 back to its normal setting, and try to check other possible causes.

2. CPU PCB

Figure 3-15
LED1: turns on when +5 V is supplied.
LED2: turns on when +24 V is supplied.

3. IP main PCB

Figure 3-16

4. Analog Processor PCB

Figure 3-17

5. Laser Driver PCB

Figure 3-18
VR2: for Pmax adjustment of the laser.

6. Lamp Regulator PCB

Figure 3-19

7. DC Fuse PCB

Figure 3-20
8. AC Fuse PCB

Figure 3-21
9. Developing Bias PCB

Figure 3-22

10. HVT-AC PCB

Figure 3-23
11. Potential Measurement PCB

Figure 3-24
LED1: remains on while the surface potential of the drum is being measured.

CHAPTER 4 SERVICE MODE

A. Outline

The copier's service mode consists of three levels, each using its own screen: Initial screen, Level 1/Level 2 item Screen, and Level 3 item screen.

Figure 4-1 Organization of Screens

The copier's service mode consists of the following seven:

Figure 4-2 Division of Service Mode

1. Starting Service Mode and Making Selections
1) Press the asterisk key $*^{*}$ on the control panel.
2) Press ' 2 ' and ' 8 ' on the keypad at the same time.
3) Press the asterisk key ${ }^{\circledast}$ on the control key.

- The above operations will bring up the following Initial screen:

Figure 4-3 Initial Screen

2. Ending Service Mode

- Press the Reset key once to bring back the service mode Initial screen (Figure 4-3).
- Press the Reset key twice to end service mode and to bring back the User screen (standard screen).

Caution:

If you used ADJUST, FUNCTION, or OPTION in service mode, be sure to turn off and then on the power switch after ending service mode.

3. Backing Up the RAM

At time of shipment from the factory, each machine is adjusted individually and its adjustment values are recorded on the service label (one of the two labels attached to the service data sheet cover behind the front cover).

If you have replaced the CPU PCB or initialized the RAM, be sure to record all service mode values (ADJUST/OPTION) of the service label. (The values will return to default values upon replacement or initialization.)

If you cannot find an appropriate heading on service label 1, make use of the blanks of service label 2.

Figure 4-4 Service Label

Back-Up Data Items

Adjust				
DENS	D-SGNL-M			
	D-SGNL-C			
	D-SGNL-K			
	D-SGNL-4			
	P-REF-Y			
	P-REF-M			
	P-REF-C			
	P-REF-K			
	P-SGNL-Y			
	P-SGNL-M			
	P-SGNL-C			
	P-SGNL-K			
	SIGG-K			
	SIGG-P-Y			
	SIGG-P-M			
	SIGG-P-C			
	SIGG-P-K			
	RGAN-P-Y			
	RGAN-P-M			
	RGAN-P-C			
	RGAN-P-K			
V-CONT	VBACK-Y			
	VBACK-M			
	VBACK-C			
	VBACK-K			
	EPOTOFST			
	PF-CRT-Y			
	PF-CRT-M			
	PF-CRT-C			
	PF-CRT-K			
PASCAL	OFST-P-Y			
	OFST-P-M			
	OFST-P-C			
	OFST-P-K			
COLOR	ADJ-Y			
	ADJ-M			
	ADJ-C			
	ADJ-K			
	OFST-Y			

Adjust				
COLOR	OFST-M			
	OFST-C			
	OFST-K			
	P-ADJ-Y			
	P-ADJ-M			
	P-ADJ-C			
	P-ADJ-K			
	P-OFST-Y			
	P-OFST-M			
	P-OFST-C			
	P-OFST-K			
HV-TR	TR-TR			
	TR-L1			
	HV-L2			
	TR-N1			
	TR-N2			
	TR-T1			
	TR-T2			
	TR-UT1			
	TR-UT2			
	TR-S1-1			
	TR-S2-1			
	TR-OHP			
	TR-POST			
HV-SP	HV-SP			
	SP-L1			
	SP-L2			
	SP-N1			
	SP-N2			
	SP-T1			
	SP-T2			
	SP-UT1			
	SP-UT2			
	SP-S1-1			
	SP-S2-1			
	SP-OHP			
	SP-POST			
	SP-ON-N1			
	SP-ON-N2			
	SP-ON-L1			

Adjust				
HV-SP-AC	HV-SP			
	SP-L1			
	SP-L2			
	SP-N1			
	SP-N2			
	SP-T1			
	SP-T2			
	SP-UT1			
	SP-UT2			
	SP-S1-1			
	SP-S2-1			
	SP-OHP			
	SP-POST			
HV-PSTCL	HV-PSTCL			
FEEDER	ADJ-RX			
	ADJ-RY			
	ADJ-DX			
	ADJ-DY			
PRJ	DS-PRJ			
	DS-OHP			
	RD-XS			
	RD-XE			
	RD-YS			
	RD-YE			
	DA-XS			
	DA-XE			
	DA-YS			
	DA-YE			
	NEGA-B			
	NEGA-G			
	NEGA-R			
	POSI-B			
	POSI-G			
	POSI-R			
	N-LMT			
	N-G-LMT			
	P-LMT			
	P-G-LMT			

CHAPTER 4 SERVICE MODE

4. Basic Operation

a. Initial Screen

Figure 4-5
b. Level 1/Level 2 Item Screen

Figure 4-6
c. Level 3 Item Screen

Figure 4-7

Figure 4-8

B. DISPLAY (control display mode)

COPIER>DISPLAY Items

Level 1 item
Level 2 item
Level 3 item
DISPLAY \qquad

ROM version of the DC controller
ROM version of the reader controller
ROM version of the control panel controller
ROM version of the scanner motor
ROM version of the ECO PCB
ROM version of the feeder controller
ROM version of the sorter controller
ROM version of the external image controller
language used
state of connection of the feeder state of connection of the sorter state of connection of the paper deck state of connection of the projector state of connection of the editor state of connection of the PS-XJ state of insertion of the control card state of connection of the copy data controller
machine internal temperature (environment sensor) machine internal humidity (environment sensor) machine internal absolute humidity temperature (THM1) of the middle of the fixing upper roller
temperature (THM3) of the middle of the fixing lower roller
temperature (THM2) of the ends of the fixing upper roller
temperature (THM4) of the ends of the fixing lower roller
paper width of cassette 2
paper width of cassette 3 (if CLC1150, cassette 2)
paper width of the multifeeder
history of jams
history of errors
bar code value of the standard white PLATE shading target value for BLUE
shading target value for GREEN
shading target value for RED
gain increase of BLUE
gain increase of GREEN
gain increase of RED
offset adjustment value of BLUE-ODD
offset adjustment value of GREEN-ODD
offset adjustment value of RED-ODD
offset adjustment value of BLUE-EVEN
offset adjustment value of GREEN-EVEN
offset adjustment value of RED-EVEN

gain adjustment value of LUE-ODD gain adjustment value of GREEN-ODD gain adjustment value of RED-ODD gain adjustment value for BLUE-EVEN gain adjustment value for GREEN-EVEN gain adjustment value for RED-EVEN indicates type (CCD/analog processor) indicates the result of automatic adjustment (normal mode/precious metal mode) black offset value for BLUE-ODD black offset value for GREEN-ODD black offset value for RED-ODD black offset value for BLUE-EVEN black offset value for GREEN-EVEN black offset value for RED-EVEN data value of activation voltage for the scanning lamp
surface potential (V) of the photosensitive drum setting (V) of Y at laser output 00 setting (V) of M at laser output 00 setting (V) of C at laser output 00 setting (V) of Bk at laser output 00 setting (V) of Y at laser output FF setting (V) of M at laser output FF setting (V) of C at laser output FF setting (V) of Bk at laser output FF setting (V) of Y for developing bias DC component setting (V) of M for developing bias DC component setting (V) of C for developing bias DC component setting (V) of Bk for developing bias DC component setting (V) of Y for grid bias setting (V) of M for grid bias setting (V) of C for grid bias setting (V) of Bk for grid bias setting (V) of Y for target contrast potential setting (V) of M for target contrast potential setting (V) of C for target contrast potential setting (V) of Bk for target contrast potential setting (V) of Y for de-fogging potential setting (V) of M for de-fogging potential setting (V) of C for de-fogging potential setting (V) of for de-fogging potential setting of drum surface potential at laser V00 while the primary charging assembly is at -500 V setting of drum surface potential at laser VFF while the primary charging assembly is at -700 V setting of drum surface potential at laser V00 while the primary charging assembly is at -500 V setting of drum surface potential at laser VFF while the primary charging assembly is at -700 V dark area potential attenuation $(\triangle \mathrm{V})$ at laser V00 while the drum surface potential is at 500 V dark area potential attenuation $(\triangle \mathrm{V})$ at laser V00 while the drum surface potential is at 700 V dark area potential attenuation $(\triangle \mathrm{V})$ at laser VFF while the drum surface potential is at 500 V

	- DVFF-700 $-\quad$ PFF-Y - $\operatorname{PFF-M}$ $-\quad$ PFF-C PFF-K	dark area potential attenuation $(\triangle \mathrm{V})$ at laser VFF while the drum surface potential is at 700 V setting of laser pulse width for Y setting of laser pulse width for M setting of laser pulse width for C setting of laser pulse width for Bk
- DENS	- DENS-Y	result of computation of the developer concentration inside the Y developing assembly
	DENS-M	result of computation of the developer concentration inside the M developing assembly
	$-\begin{aligned} & \text { DENS-C } \\ & - \text { DENS-K } \end{aligned}$	result of computation of the developer concentration inside the C developing assembly result of computation of the developer concentration inside the Bk developing assembly
	INDOW-Y	window soiling coefficient of Y
	WINDOW-M	window soiling coefficient of M
	WINDOW-C	window soiling coefficient of C
	- WINDOW-K	window soiling coefficient of Bk
	- DMAX-Y	solid density of Y at time of auto gradation correction
	- DMAX-M	solid density of M at time of auto gradation correction
	- DMAX-C	solid density of C at time of auto gradation correction
	- DMAX-K	solid density of Bk at time of auto gradation correction
	- FFRATE-Y	correction value of Y used to set the maximum toner density while gradation characteristics are being controlled for stabilization
	- FFRATE-M	correction value of M used to set the maximum toner density while gradation characteristics are being controlled for stabilization
	- FFRATE-C	correction value of C used to set the maximum toner density while gradation characteristics are being controlled for stabilization
	- FFRATE-K	correction value of Bk used to set the maximum toner density while gradation characteristics are being controlled for stabilization
	- PTOFST-Y	offset value of laser strength for Y patch image density correction
	- PTOFST-M	offset value of laser strength for M patch image density correction
	- PTOFST-C	offset value of laser strength for C patch image density correction
	- PTOFST-K	offset value of laser strength for Bk patch image density correction
	- D-Y-TRGT	target value for Y developer concentration
	- D-M-TRGT	target value for M developer concentration
	- D-C-TRGT	target value for C developer concentration
	- REF-Y	measurement of the concentration reference signal inside the Y developing assembly (present value; direct light from LED)
	- REF-M	measurement of the concentration reference signal inside the M developing assembly (present value; direct light from LED)

	$\begin{aligned} & - \text { REF-C } \\ & - \text { SGNL-Y } \\ & - \text { SGNL-M } \\ & - \text { SGNL-C } \\ & - \text { PT-REF-YEF-M } \\ & \hline \text { - PT-REF-C } \\ & \hline \text { PT-REF-K } \\ & \hline \text { PT-SIG-Y } \\ & \hline \text { PT-SIG-MIG-C } \\ & \hline \text { PT-SIG-K } \\ & \hline \text { PT-SIG-D } \\ & \hline \text { PT-REF-D } \\ & \hline \text { DMAX70-Y } \\ & \hline \text { DMAX70-M } \\ & \hline \text { DMAX70-C } \\ & \text { DMAX70-K } \end{aligned}$	measurement of the concentration reference signal inside the C developing assembly (present value; direct light from LED) measurement of the present Y developer concentration (present value) measurement of the present M developer concentration (present value) measurement of the present C developer concentration (present value) concentration reference signal for Y toner on the photosensitive drum concentration reference signal for M toner on the photosensitive drum concentration reference signal for C toner on the photosensitive drum concentration reference signal for Bk toner on the photosensitive drum concentration signal of Y toner on the photosensitive drum (present value) concentration signal of M toner on the photosensitive drum (present value) concentration signal of C toner on the photosensitive drum (present value) concentration signal of Bk toner on the photosensitive drum (present value) reflection intensity signal of the photosensitive drum surface (present value) reflection intensity reference signal of the photosensitive drum surface solid concentration of Y at laser pulse width 70% during auto gradation correction solid concentration of M at laser pulse width 70% during auto gradation correction solid concentration of C at laser pulse width 70% during auto gradation correction solid concentration of Bk at laser pulse width 70%
- SENSOR		output of the original scanner HP sensor (PS1) output of the side A sensor (PS2) output of the side B sensor (PS3) fixing cleaning belt is absent waste toner case is full

PRJ>DISPLAY Items

Level 1 item	Level 2 item	Level 3 item	Description
DISPLAY		CHANGER	auto changer (0: absent, 1 : present)
		TRAY	slide tray (0: absent, 1: present)
		T-KIND	tray type (0: 80, 1: 40)
		- T-SET	slide (0: absent, 1: present)
		- T-MOVE	tray (0: stationary, 1 : moving)
		- T-M-ERR	tray movement error (0: normal, 1: error)
		- T-HP-ERR	tray HP error (0: normal, $1:$ error)
		- T-L-MOVE	tray local movement (0: stationary, 1: moving)
		- T-POS	tray position (0: HP, 1: not HP)
		- L-MOVE	lens movement (0: stationary, 1 : moving)
		- M-EXCT	motor excitation (0: normal, 1: excited)
		- L-POS	lens position (0: HP, 1: not HP)
		- LAMP-ERR	lamp open circuit detection (0 : normal, 1: short circuit)
		- INITIAL	initialization (0: normal, 1: initializing)
		- LOCAL	local operation (0: normal, 1: operating)
		- R/L	0 : remote, 1: local

EDITOR>DISPLAY Items

Level 1 item Level 2 item Level 3 item Description

input coordinates in editor sub scanning (X) direction input coordinates in editor main scanning (Y) direction

VERSION

Indicates the ROM version of the PCBs of the copier and its accessories.

Level 3	Description	Remarks
DC-CON	Indicates the version of the flash memory of the DCCPU.	$\text { Display }\left\langle\frac{\mathrm{XX}}{\square} \cdot \frac{\mathrm{YY}}{\mid}\right\rangle$
R-CON	Indicates the version of the flash memory on the RCPU.	R\&D number Version number
PANEL	Indicates the version of the flash memory on the PANEL-CPU.	
SCANNER	Indicates the version of the CPU (IC8) on the original scanner motor driver PCB.	
ECO	Indicates the version of the ROM (IC2) on the ECO PCB.	
FEEDER	Indicates the version of the ROM on the feeder controller.	
SORTER	Indicates the version of the ROM on the sorter controller.	
IMG-CNT	Indicates the version of the ROM on the external image controller.	

Indicates items related to the User screen and the user.

ACC-STS

Indicates the state of connection of accessories.

Level 3	Description	Remarks
FEEDER	Indicates the sate of connection of the feeder.	0: not connected
SORTER	Indicates the state of connection of the sorter.	1:connected
DECK	Indicates the state of connection of the paper deck.	
PRJ	Indicates the state of connection of the projector.	
EDITOR	Indicates the state of connection of the editor.	
PS-XJ	Indicates the state of connection of the PS-XJ.	
CARD	Indicates the state of insertion of a control card.	
DATA-CON	Indicates the state of connection of the copy data controller.	

ANALOG

Indicates the measurements taken by the analog sensor.

Level 1	Description	Remarks
TEMP	Indicates the machine internal temperature (environment sensor). Indicates the machine internal humidity (movement sensor).	Unit: ${ }^{\circ} \mathrm{C}$
ABS-HUM $\% \mathrm{RH}$		
FIX-UC	Indicates the machine internal absolute humidity. Indicates the temperature (THM1) of the middle of the fixing upper roller.	Unit: g
Unit: ${ }^{\circ} \mathrm{C}$		

CST-STS

Indicates the paper size of the cassette/multifeeder.

Level 1	Description	Remarks
WIDTH-C2	Indicates the paper switch of the cassette 2 (CLC1120 only).	Unit: mm (decimal places are omitted)
WIDTH-C3	Indicates the paper width of the cassette 3 (for CLC1150, cassette 2).	
WIDTH-MF	Indicates the paper width of the multifeeder.	

Indicates jam data.

Display I/O	Adjust	Funct		Optio		Test	Cou
< JAM >		<1/8	< READY >				
AAA BBBB	CCCC	DDD		FFff	G	HHH	
AAA BBBB	CCCC	DDD		FFff	G	HHH	H
AAA BBBB	CCCC	DDD		FFff	G	HHH	H
AAA BBBB	CCCC	DDD		FFff	G	HHH	H
AAA BBBB	CCCC	DDD		FFff	G	HHH	H
AAA BBBB	CCCC	DDD		FFff	G	HHH	H
AAA BbBB	CCCC	DDD		FFff	G	HHH	H
AAA BBBB	CCCC	DDD		FFff	G	HHH	H
$\checkmark \checkmark$	D						

Figure 4-9

Item	Description	Remarks
AAA	Indicates the order of jams (higher the number, older the jam).	1 to 64 (64 jams max.)
BBBB	----	
CCCC	---	
DDDD	----	0: copier E
1: feeder		
Indicates the location of the jam.	2: sorter	
FFff	Jam code	FF: type of jam (Table 13- 701) ff: sensor (Table 13-702)
		See Table 13-703.
G	Indicates the source of paper.	
HHHHHH	Indicates the soft counter for the source of paper. Indicates the size of paper.	USER: non-default size PCARDR: post card

Code	Type	Code	Type
$00 x x$	Feeder	$04 x x$	service mode
$01 x x$	delay	05xx	sorter
$02 x x$	stationary	EExx	service call
$03 x x$	remaining	FFxx	door open

Table 4-1

ff: Jam Sensor

	Jam sensor	Code	Jam sensor
xx01*	pickup vertical path sensor (PS27)	xx50	post-transfer paper sensor (PS6)
xx02*	pickup vertical path sensor (PS26)	xx51	pre-transfer paper sensor (PS5)
xx03*	pickup vertical path sensor 1 (PS21)	0052	pre-cleaning paper sensor (PS71)
xx04*	re-pickup vertical path sensor (PS28)	xx60	separation sensor (PS7)
xx05	deck pickup sensor (PS101)	xx61	internal delivery paper sensor (PS12)
xx06	multifeeder pickup sensor (PS9)	xx70	external delivery sensor (PS31)
xx09	pickup vertical path sensor (PS27)	xx80	delivery vertical path sensor 1 (PS32)
xx10	pickup vertical path sensor 2 (PS26)	xx81	delivery vertical path sensor 1 (PS33)
xx11	pickup vertical path sensor 1 (PS21)	xx82	duplexing inlet paper sensor (PS37)
xx12	re-pickup vertical path sensor (PS28)	xx83	duplexing path paper sensor (PS34)
0020	transparency sensor (PS69)	xx84	duplexing path reversal paper sensor
xx30	pre-registration sensor (PS30)		(PS35)
xx40	registration sensor(PS70)	xx90	buffer path unit sensor assembly

* Detection at time of pickup.

Table 4-2a

Code	Type	Code	Type of jam
xx03	feeding delay	xx08	door open jam (paper present)
xx04	feeding stationary	xx09	door open jam (paper absent)
xx06	staple jam	xx0A	bin outside jam
$x x 07$	power-on jam		

Table 4-2b

G: Source of Paper

Code	Description	Code	Description
1	cassette 1	6	not used
2	cassette 2	7	paper deck
3	cassette 3	8	multifeeder
4	not used	9	duplexing unit
5	not used		

Table 4-3

ERR

COPIER>DISPLAY
Indicates error codes.

Figure 4-10

Level 3	Description	Remarks
AAA	Indicates the order of errors (the higher the number, the older the error).	1 to 32 (32 max.)
BBBB	----	
CCCC	---	
DDDD	----	See "Self Diagnosis."
EEEE	Indicates the error code.	If none, '0000'. FFff
Indicates the detail code.	0: copier	
G	Indicates the location of the error.	2: sorter
HH	alarm code (not used: indicates '00')	

Indicates the measurements related to the CCD.

Level 3	Description	Remarks
BAR-CODE	bar code value of the standard white plate	Indicated only when FUNCTION>CCD>CCDADJ has been executed.
TARGET-B TARGET-G TARGET-R GAIN-U-B GAIN-U-G GAIN-U-R OFST-OB OFST-OG OFST-OR OFST-EB OFST-EG OFST-ER GAIN-OB GAIN-OG GAIN-OR GAIN-EB GAIN-EG GAIN-ER CCD-TYPE METAL BOF-OB BOF-OG BOF-OR BOF-EB BOF-EG BOF-ER	shading target value of BLUE shading target value of GREEN shading target value of RED gain increase value of BLUE gain increase value of GREEN gain increase value of RED offset adjustment value of BLUE-OD offset adjustment value of GREEN-ODD offset adjustment value of RED-ODD offset adjustment value of BLUE-EVEN offset adjustment value of GREEN-EVEN offset adjustment value of RED-EVEN gain adjustment value of BLUE-ODD gain adjustment value of GREEN-ODD gain adjustment value of RED-ODD gain adjustment value of BLUE-EVEN gain adjustment value of GREEN-EVEN gain adjustment value of RED-EVEN type (CCD/analog processor) result of automatic adjustment (normal mode/ precious metal mode) black offset value of BLUE-ODD black offset value of GREEN-ODD black offset value of RED-ODD black offset value of BLUE-EVEN black offset value of GREEN-EVEN black offset value of RED-EVEN	(3: CLC1100 only) 0 : normal mode 1: precious metal mode
LAMP-DAT	original scanning lamp activation voltage for CVR	0 to 999

Indicates the control data for the surface potential of the photosensitive drum.

Level 3	Description	Remarks
DPOT	surface potential (V) of the photosensitive drum	Indicated in round numbers,
V00-Y	setting (V) of Y at laser output 00	
V00-M	setting (V) of M at laser output 00	
V00-C	setting (V) of C at laser output 00	
V00-K	setting (V) of Bk at laser output FF	
VFF-Y	setting (V) of Y at laser output FF	
VFF-M	setting (V) of M at laser output FF	
VFF-C	setting (V) of C at laser output FF	
VFF-K	setting (V) of Bk at laser output FF	
VDC-Y	setting (V) of Y for developing bias DC component	
VDC-M	setting (V) of M for developing bias DC component	
VDC-C	setting (V) of C for developing bias DC component	
VDC-K	setting (V) of Bk for developing bias DC component	
VG-Y	setting (V) of Y for grid bias	
VG-M	setting (V) of M for grid bias	
VG-C	setting (V) of C for grid bias	
VG-K	setting (V) of Bk for grid bias	

COPIER>DISPLAY

Level 3	Description	Remarks
VCONT-Y VCONT-M VCONT-C VCONT-K VBACK-Y VBACK-M VBACK-C VBACK-K V00-500 V00-700 VFF-500 VFF-700 DV00-500 DV00-700 DVFF-500 DVFF-700 PFF-Y PFF-M PFF-C PFF-K	setting (V) of Y for target contrast potential setting (V) of M for target contrast potential setting (V) of C for target contrast potential setting (V) of Bk for target contrast potential setting (V) of de-fogging potential for Y setting (V) of de-fogging potential for M setting (V) of de-fogging potential for C setting (V) of de-fogging potential for Bk measurement of drum surface potential at laser V00 with the primary charging assembly at -500 V measurement of drum surface potential at laser V00 with the primary charging assembly at -700 V measurement of drum surface potential at laser VFF with the primary charging assembly at -500 V measurement of drum surface potential at laser VFF with the primary charging assembly at -700 V dark area potential attenuation $(\triangle \mathrm{V})$ at laser V00 with the drum surface potential at 500 V dark area potential attenuation $(\triangle \mathrm{V})$ at laser V00 with the drum surfaced potential at 700 V dark area potential attenuation $(\triangle \mathrm{V})$ at laser VFF with the drum surfaced potential at 500 V dark area potential attenuation $(\triangle \mathrm{V})$ at laser VFF with the drum surfaced potential at 700 V setting of laser pulse width for Y setting of laser pulse width for M setting of laser pulse width for C setting of laser pulse width for Bk	Indicated in round numbers, omitting decimal places.

DENS

Indicates the concentration of developer.

Level 3	Description	Remarks
	computed value (\%) of the developer inside the Y developing assembly computed value (\%) of the developer inside the M developing assembly computed value (\%) of the developer inside the C developing assembly computed value (\%) of the developer inside the Bk developing assembly	Indicates to the second decimal place.
WINDOW-Y WINDOW-M WINDOW-C WINDOW-K	window soiling correction coefficient for Y window soiling correction coefficient for M window soiling correction coefficient for C window soiling correction coefficient for Bk	Error if lower than 70\%
DMAX-Y DMAX-M DMAX-C DMAX-K	solid density (\%) of Y during auto gradation correction solid density (\%) of M during auto gradation correction solid density (\%) of C during auto gradation correction solid density (\%) of Bk during auto gradation correction	Compares against the design value, and omits decimal places.
FFRATE-Y FFRATE-M FFRATE-C FFRATE-K	correction value of each used to determine the maximum toner density (FF) while gradation characteristics are being controlled for stabilization	Reference: 100
PTOFST-Y PTOFST-M PTOFST-C PTOFST-K	offset value of laser strength for Y patch image density adjustment offset value of laser strength for M patch image density adjustment offset value of laser strength for C patch image density adjustment offset value of laser strength for Bk patch image density adjustment	Uses whole numbers, omitting decimal places

COPIER>DISPLAY

Level 3	Description	Remarks		
D-Y-TRGT	target value of Y developer concentration D-M-TRGT D-C-TRGT REF-Y target value of M developer Concentration developer concentration present value of the density reference signal for the Y developing assembly (direct light form (LED) present value of the density reference signal for the M developing assembly (direct light form (LED) present value of the density reference signal for the C developing assembly (direct light from LED)	Indicated in round numbers, omitting decimal places		
REF-M				
REF-C				
mencement of the present Y developer				
concentration				
measurement of the present M developer				
concentration			\quad	measurement of the present C developer
:---				
concentration	\quad	SGNL-Y		
:---				

SENSOR

COPIER>DISPLAY
Indicates the state of sensors of particular importance for servicing work.

Level 3	Description	Remarks
SC-HP	output of the original scanner HP sensor (PS1)	$\begin{aligned} & 0: \mathrm{HP} \\ & 1: \text { not HP } \end{aligned}$
ITOP-A	output of the side A sensor (PS2)	0 : sensor not detecting signal plate
ITOP-B	output of side B sensor (PS3)	1: sensor detecting signal plate
WEB	cleaning belt is out	0: present 1: absent
W-TONER	case full	0 : case not full 1: case is full

Level 3	Description	Remarks
CHANGER	presence/absence of the auto changer	$0:$ absent, 1: present
TRAY	presence/absence of the slide tray	$0:$ absent, 1: present
T-KIND	type of tray	$0: 80,1: 140$
T-SET	presence/absence of slides	$0:$ absent, 1: present
T-MOVE	state of the tray	$0:$ stationary, 1: moving
T-M-ERR	tray movement error	$0:$ normal, 1: error
T-HP-ERR	tray HP error	$0:$ normal, 1: error
T-L-MOVE	tray local movement	$0:$ stationary, 1: moving
T-POS	position of the tray	$0:$ HP, 1: not HP
L-MOVE	lens movement	$1:$ stationary, 1: moving
M-EXCT	state of motor excitation	$0:$ normal, 1: excited
L-POS	position of the lens	$0:$ HP, 1: not HP
LAMP-ERR	open circuit in the lamp	$0:$ normal, 1: open circuit
INITIAL	initialization	$0:$ normal, 1: being initialized
LOCAL	local movement	$0:$ normal, 1: moving
R/L	remote/local	$0:$ remote, 1: local

Editor
EDITOR>DISPLAY

Level 3	Description	Remarks
ED-X	input coordinates in editor sub scanning direction (X)	Not indicated if EDITOR>OPTION> ED-Y
	input coordinates in editor main scanning direction (Y)	ED-MODE is set to '0'.

C. I/O (I/O display mode)

1. DC-CPU

I/O>DC-CON

Address	bit	Description	Remarks
P001	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & 6 \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	buffer path unit jam detection not used internal delivery sensor (PS12) signal external delivery sensor (PS31) signal separation sensor (PS7) signal post-transfer paper sensor (PS6) signal pre-transfer paper sensor (PS5) signal registration sensor (PS70) signal pre-registration sensor (PS30) signal transparency sensor (PS69) signal multifeeder pickup sensor (PS9) signal deck pickup sensor (PS101) signal re-pickup vertical path sensor (PS28) signal pickup vertical path 1 sensor (PS28) signal pickup vertical path 2 sensor (PS26) signal pickup vertical path 3 sensor (PS27) signal	1: paper present 1: paper present (Note) 1: paper present 1: paper present (plain paper) (Note) 1: paper present
P002	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	pre-registration sensor (PS30) signal not used multifeeder paper sensor (PS15) signal deck paper absent sensor (PS102) signal duplexing tray paper sensor (PS36) signal cassette 1 paper sensor (PS20) signal cassette 2 paper sensor (PS24/DPS24) signal cassette 3 paper sensor (PS25/DPS25) not used not used not used duplexing reversal paper sensor (PS35) signal duplexing path paper sensor (PS34) signal duplexing inlet paper sensor (PS37) signal delivery vertical path 2 sensor (PS33) signal delivery vertical path 1 sensor (PS32) signal	1: paper present 1: paper present 1: paper present 0: paper present 1: paper present

Note: The sensor detects paper after the LED of the sensor turns on; normally, ' 1 ' is indicated, since the LED is not ON.

I/O>DC-CON

Address	bit	Description	Remarks
P003	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \\ & 4 \\ & 3 \\ & 2 \end{aligned}$	```hopper motor (M10) ready signal transfer drum cleaner brush motor (M8) ready signal not used duplexing motor (M14) ready signal laser scanner motor (M3) ready signal fixing motor (M5) ready signal drum motor (M2) ready signal main motor (M4) ready signal not used not used```	0: READY 0: READY
P004	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	not used paper deck connect signal duplexing unit connect buffer path unit connect signal transfer drawer connector connect signal registration path driver drawer connect signal transfer drawer connector signal fixing drawer connector signal control switch (SW2) off detection multifeeder tray open/closed sensor (PS62) signal not used buffer door switch signal pickup cover sensor (PS44) signal left front cover sensor (PS42) signal right front cover sensor (PS41) signal delivery cover sensor (PS43) signal	0: connect connect : buffer path is present transfer unit is present connected lever is set connected OFF 0: open 1: open 0: open 0: open 0: open 0: open

Address	bit	Description	Remarks
P005	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	not used not used not used not used pickup holder model code 3 signal pickup holder model code 2 signal pickup holder model code 1 signal pickup holder model code 0 signal not used not used not used not used cassette 2 paper length sensor 1 (PSU2) signal cassette 2 paper length sensor 0 (PSU2) signal cassette 3 paper length sensor 1 (PSU3/DPSU3) signal cassette 3 paper length sensor (PSU3/DPSU3) signal	$\begin{array}{ll} 1: & \mathrm{ON} \\ 1: & \mathrm{ON} \\ 1: & \mathrm{ON} \\ 1: & \mathrm{ON} \end{array}$
P006	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & 6 \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	not used Bk toner level sensor (TS4) signal not used not used Y toner level sensor (TS3) signal not used C toner level sensor (TS2) not used M toner level sensor (TS1) signal waste toner feedscrew locked detecting switch (SW7) signal waste toner case full sensor (PS68) signal not used fixing oil level sensor (PS10) signal fixing upper cleaning belt length sensor (PS11) signal fixing lower cleaning belt length sensor (PS67) signal not used not used	0: lower than specified 0 : lower than specified 0: lower than specified 0: lower than specified 0 : locked 1: full 0: lower than specified 0 : belt absent 0 : belt absent

Address	bit	Description	Remarks
P007	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	multifeeder lifter H sensor (PS17) signal multifeeder lifter L sensor (PS18) signal deck lifter upper limit sensor (PS103) signal not used not used cassette 1 lifter sensor (PS19) signal cassette 2 lifter sensor (PS22/DPS22) signal cassette 3 lifter sensor (PS23/DPS23) signal not used not used not used not used shutoff (SHUTOFF) error detection SSR2 error detection not used not used	1: ON 1: ON 1: upper limit 1: ON 1: ON 1: ON 1: error 0 : error
P008	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \\ & 4 \end{aligned}$	not used not used counter mode 5 signal counter mode 4 signal counter mode 3 signal counter mode 2 signal counter mode 1 signal counter mode 0 signal not used cassette 1 sensor (PS46) signal cassette 2 sensor (PS47/DPS47) signal cassette 3 sensor (PS48/DPS48) signal	1: cassette is present 1: cassette is present 1: cassette is present

Address	bit	Description	Remarks
P009	$\begin{aligned} & \hline 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	not used C sensor (PS4) signal side B sensor (PS3) image leading edge signal side A sensor (PS2) image leading edge signal not used not used not used paper jogging guide HP sensor (PS40) signal attraction/transfer locking cam home position sensor (PS8) signal transfer drum cleaner HP sensor (PS59) signal transfer drum HP sensor (PS57) signal not used	1: ON 1: ON (light-blocking plate present) 1: ON (light-blocking plate present) HP HP HP HP
P00A	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	not used not used not used not used Bk developing assembly HP sensor (PS55) signal Y developing assembly HP sensor (PS53) signal C developing assembly HP sensor (PS51) signal M developing assembly HP sensor (PS49) signal not used polishing roller motor (M9) error detection multifeeder lifter motor (M15) error detection deck lifter motor (M101) error detection not used cassette 1 lifter motor (M11) error detection cassette 2 lifter motor (M12/DM2) error detection cassette 3 lifter motor (M13/DM13) error detection	$\begin{aligned} & \text { 1: HP } \\ & \text { 1: HP } \\ & 1: \mathrm{HP} \\ & 1: \mathrm{HP} \\ & \text { 1: error } \\ & 1: \text { error } \\ & 0: \text { error } \\ & \text { 1: error } \\ & \text { 1: error } \\ & 1: \text { error } \end{aligned}$

Address	bit	Description	Remarks
P00B	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	power supply cooling fan (FM9) error detection not used 24 V off detection (linked to door) not used not used internal static eliminator high voltage error HVT AC error detection cleaning blade reciprocating motor (M7) error detection buffer path unit locking cam sensor signal not used pre-cleaning paper sensor (PS71) signal not used	1: error 1: OFF 1: error 1: error 0 : error 1: HP 1: paper present (Note)
P00C	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	not used fixing motor (M5) CLK signal not used drum motor (M2) CLK signal (divided by $1 / 2$) drum motor (M2) CLK signal	Alternates between 0 and 1 . Alternates between 0 and 1 . Alternates between 0 and 1 .

Note: The sensor detects paper after the LED of the sensor turns on; normally, ' 1 ' is indicated, since the LED is not ON.

Address	bit	Description	Remarks
P00D	$\begin{aligned} & \hline 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & \hline \end{aligned}$	not used fixing oil pump driver error detection not used fixing upper thermistor open circuit detection fixing lower thermistor open circuit detection fixing upper heater error detection fixing lower heater error detection SSR1 (fixing upper heater side) error detection SSR1 (fixing lower heater side) error detection	1: HP 0 : error if pump is in operation. 1: error if pump is at rest. 1: open circuit 1: open circuit 1 error 1 error 1 error 1 error
P00E	$\begin{aligned} & \hline 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & 6 \\ & 5 \end{aligned}$	not used toner suction fan (FM6) error detection not used delivery cooling fan (FM11) error detection	1: error 1: error

Address	bit	Description	Remarks
P00F	15-0	not used	
P010	15-0	not used	
P011	$\begin{aligned} & \hline 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	hard check output hard check output har d check output hard check output not used pre-exposure lamp (LA1) activation signal	1: ON
P012	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & \\ & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 5 \\ & 4 \\ & 3 \\ & 2 \end{aligned}$	laser scanner motor (M3) clock switch signal transfer drum cleaner brush motor (M8) drive signal duplexing motor (M14) not used not used not used cleaning blade reciprocating motor (M7) drive signal laser sensor motor (M3) drive signal Bk toner supply clutch (CL8) drive signal Y toner supply clutch (CL7) drive signal C toner supply clutch (CL6) drive signal M toner supply clutch (CL5) drive signal Bk developing cylinder clutch (CL4) drive signal Y developing cylinder clutch (CL3) drive signal C developing cylinder clutch (CL2) drive signal M developing cylinder clutch (CL1) drive signal	$\begin{aligned} & \text { 0: ON } \\ & \text { 0: ON } \\ & \\ & \\ & \text { 1: ON } \\ & \\ & \text { 0: ON } \\ & \text { 1: ON } \\ & 1: \mathrm{ON} \end{aligned}$

I/O>DC-CON

Address	bit	Description	Remarks
P013	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	control state of the fixing heater not used transparency sensor LED (PS69L) ON signal pre-cleaning paper sensor LED (PS71L) ON signal fixing upper heater drive signal fixing lower heater drive signal fixing oil pump (PSP1) drive signal SSR2 not used not used stopper plate solenoid (SL12) drive signal stopper plate solenoid (SL12) drive signal not used not used not used duplexing feeding clutch (CL14) drive signal	0 : during control 1: ON 1: ON 0: ON 0: ON 0: ON 1: ON 0 : open, 1 : closed 0 : closed, 1: open 1: ON
P014	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	not used not used not used not used Bk toner concentration measurement LED ON signal Y toner concentration measurement LED ON signal C toner concentration measurement LED ON signal M toner concentration measurement LED ON signal not used not used primary charging wire cleaning motor (M6) forward signal primary charging wire cleaning motor (M6) reverse signal not used not used polishing roller motor (M9) reverse rotation signal polishing roller motor (M9) normal rotation signal	1: ON 1: ON 1: ON 1: ON 0 : forward, 1: reverse 1 forward, 0 : reverse 1: ON 1: ON 1: reverse, 0: normal direction 0 : reverse, 1: normal (roller contact)

Address	bit	Description	Remarks
P015	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	not used not used not used not used counter 3 (CNT4) signal counter 2 (CNT3) signal counter 1 (CNT2) signal counter 0 (CNT1) signal registration jam timing signal deck sensor select signal 2 deck sensor select signal 1 deck sensor select signal 0 pre-registration jam timing signal pickup sensor select signal 2 pickup sensor select signal 1 pickup sensor select signal 0	
P016	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	not used A/D multiplex select signal 2 A/D multiplex select signal 1 A/D multiplex select signal 0 not used not used fixing upper cleaning belt solenoid (SL1) fixing lower cleaning belt solenoid (SL2) delivery vertical path clutch (CL19) delivery paper deflecting plate solenoid (SL10) separation claw solenoid (SL4) shutoff signal	$\begin{aligned} & 1: \mathrm{ON} \\ & 1: \text { shutoff } \end{aligned}$

Address	bit	Description	Remarks
P017	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	not used registration clutch (CL9) drive signal multifeeder feed clutch (CL10) drive signal multifeeder pickup clutch (CL16) drive signal deck pickup clutch (CL102) drive signal duplexing feed clutch (CL14) drive signal cassette 1 pickup clutch (CL1) drive signal cassette 2 pickup clutch (CL12/DCL12) drive signal cassette 3 pickup clutch (CL13/DCL13) drive signal	1: ON 1: ON
P018	$\begin{aligned} & \hline 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & 6 \\ & 5 \end{aligned}$	not used toner suction fan (FM6) drive signal 1 toner suction fan (FM6) drive signal 0 laser scanner motor cooling fan (FM4) drive signal not used not used not used delivery cooling fan (FM11) drive signal 1 delivery cooling fan (FM11) drive signal 0	$\begin{aligned} & \text { 1: ON } \\ & 1: \text { ON } \\ & \text { 1: ON } \\ & \text { 0: full speed, 1: half speed } \\ & \text { 1: full speed, } 0 \text { : half speed } \end{aligned}$

I/O>DC-CON

Address	bit	Description	Remarks
P019	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	No. 3/No. 4 DC remote signal No. 3/No. 4 WBP remote signal No. 1/No. 2 DC remote signal No. 1/No. 2 WBP remote signal DC output select 4 signal DC output select 3 signal DC output select 2 signal DC output select 1 signal transfer acceleration remote signal trainer 0μ remote signal transfer DC remote signal attraction acceleration remote signal attraction 0μ remote signal attraction DC remote signal grid remote signal primary DC remote signal	0: remote 0 : remote 0 : remote 0 : remote 0 : select 0 : select 0 : select 0 : select 1: accelerate, $0: 0 \mu$ 0 : accelerate, $1: 0 \mu$ 0: remote 1: accelerate, $0: 0 \mu$ 0 : accelerate, $1: 0 \mu$ 0: remote 0: remote 0: remote
P01A	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & 6 \\ & 5 \end{aligned}$	HV-DEV-ENABLE signal HV-DC-ENABLE signal HV-AC-ENABLE signal post-cleaning charging DC remote signal separation DC remote signal separation AC remote signal internal static eliminator DC remote signal internal static eliminator AC remote signal not used multifeeder lifter motor (M15) reverse drive signal multifeeder lifter motor (M15) normal rotation drive signal deck lifter motor (M101) drive signal deck lifter down signal cassette 1 lifter motor (M11) drive signal cassette 2 lifter motor (M12/DM12) drive signal cassette 3 lifter motor (M13/DM13) drive signal	0: ENABLE 0: ENABLE 0: ENABLE 0 : remote 1: down 1: up 0: ON 1: down 1: ON 1: ON 1: ON

I/O>DC-CON

Address	bit	Description	Remarks
P01B	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & \hline 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	deck open sensor (PS109) signal deck set sensor (PS105) signal deck open switch (SW101) signal deck stack level upper sensor (PS107) signal deck paper level lower sensor (PS108) signal deck detection signal deck lifter lower limit detecting switch (SW102) signal not used not used not used hopper motor (M10) reverse rotation drive signal hopper motor (M10) drive signal fixing motor (M5) speed signal 1 fixing motor (M5) speed signal 0 not used fixing motor (M5) driver signal	0 : open 0 : set 1: open 0 : paper present 0: paper present 0: deck present 0 : lower limit 1: reverse (stirring) 0: ON 1: low speed 0 : normal 0: ON
P01C	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	not used not used main motor reversal signal main motor (M4) drive signal drum motor (M2) speed signal 1 drum motor (M2) speed signal 0 drum motor (M2) reversal signal drum motor (M2) drive signal deck open indication (LED100) ON signal deck open solenoid (SL102) drive signal not used not used not used not used postcard feeding clutch (CL18) drive signal registration roller releasing solenoid (SL5) drive signal	0 : ON 1: low speed 0 : low speed, 1: BD sync 1: normal rotation 0: ON 1: ON 1: ON 1: ON 1: ON

I/O>DC-CON

Address	bit	Description	Remarks
P01D	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	not used not used multifeeder pickup solenoid (SL14) drive signal deck pickup roller releasing solenoid (SL101) drive signal duplexing paper feed roller solenoid (SL13) drive signal pickup roller 1 solenoid (SL7) pickup roller 2 solenoid (SL8/DSL8) pickup roller 3 solenoid (SL9/DSL9) buffer path unit solenoid (SL1) drive signal buffer path unit clutch (CL1) drive signal buffer path unit solenoid (SL2) drive signal buffer path unit cam HP select signal duplexing stacking guide plate solenoid (SL15) drive signal not used attraction roller solenoid (SL6) drive signal separation push-up solenoid (SL3) drive signal	: ON I: ON 1: ON : ON : ON : ON ON : ON 0 : left side when viewed from rear 1: ON 1: ON 0: ON
P01E	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	not used back suction fan (FM16) drive signal 1 back suction fan (FM16) drive signal 0 exhaust fan (FM2) full speed drive signal exhaust fan (FM2) half speed drive signal IP cooling fan (FM7) full speed drive signal IP cooling fan (FM7) half speed drive signal	1: full speed, 0 : half speed 0 : full speed, 1 : half speed full speed, 0 : half speed full speed, 1: half speed full speed, 0 : half speed full speed, 1: half speed

Address	bit	Description	Remarks
P01F	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	not used ozone suction fan (FM5) drive signal not used primary charging assembly fan (FM3) full speed drive signal primary charging assembly fan (FM3) half speed drive signal laser scanner motor cooling fan (FM4) drive signal not used electrical unit cooling fan (FM8) full speed drive signal electrical unit cooling fan (FM8) half speed drive signal	1: ON 1: full speed, 0 : half speed 1: half speed, 0 : full speed 1: ON 1: full speed, 0 : half speed 1: full speed, 0 : half speed
P020	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	not used ozone suction fan (FM5) error detection primary charging assembly fan (FM3) error detection laser scanner motor cooling fan (FM4) error detection electrical unit cooling fan (FM8) error detection not used back suction fan (FM16) error direction exhaust fan (FM2) error detection IP cooling fan (FM7) error detection	1: error

Address	bit		Description
	15	not used	Remarks
P021	14	not used	
	13	not used	
	12	not used	
	11	not used	
	10	not used	not used
	8	not used	
	7	not used	
P022	5	not used	
P023	3	not used	
P024	$15-0$	not used	not used
P025	$15-0$	not used	not used
P026	$15-0$	not used	download mode
P027	$15-0$	not used	
P028	$15-0$	not used	
	$15-0$	not used	

2. R-CPU

Address	bit	Description	Remarks
P001	15-8	not used	
	$\begin{aligned} & \hline 7 \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	not used not used WATCH DOG pulse signal ECO PCB internal signal ECO PCB internal signal ECO PCB internal signal R-CON to DC-CON power ready signal R-CON to PANEL-CON power ready signal	
P002	15-8	not used	
	$\begin{aligned} & \hline 7 \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & \hline 1 \\ & 0 \end{aligned}$	digitizer request signal CVR time rest signal scanning lamp (LA2) ON signal not used original exposure system cooling fan 1 (FM1) half speed drive signal original exposure system cooling fan 1 (FM1) full speed drive signal original scanner motor driver RESET signal projector SSR-ON signal	1: request 1: RESET 1: ON 1: half speed, 0 : full speed 1: full speed, 0 : half speed 1: RESET 1: ON
P003	15-8	not used	
	7 6 6 5 4 3 2 1 0	digitizer ACK signal digitizer connect signal original exposure system cooling fan (FM1) error detected READER-ITOP-B input signal READER-ITOP-A input signal CC-V connect signal DC-CON to R-CON power ready signal PANEL-CON to R-CON power ready signal	1: ACK 0 : connect 1: error 0 : side B image leading edge 0 : side B image leading edge 0 : connect

Address	bit	Description	Remarks
P004	15-8	not used	
	$\begin{aligned} & \hline 7 \\ & 6 \\ & 5 \\ & 4 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	internal signal	
P005	15-8	not used	
	$\begin{array}{\|l\|} \hline 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 1 \\ 0 \end{array}$	RS-232C input signal scanner IPC error 3 scanner IPC error 2 scanner IPC error 1 scanning lamp (LA2) ON detection signal CVR error detection internal signal internal signal	1: error 1: error 1: error 1: ON 0 : error
P006	15-8	not used	
	15 7 6 5 4 3 2 1 0	RS-232C output signal internal signal not used not used not used internal signal internal signal internal signal	

Address	bit	Description	Remarks
P007	15-8	not used	
	7 6 5 4 3 2 1 0	not used not used not used not used original exposure system cooling fan 2 (FM14) half speed drive signal original exposure system cooling fan 2 (FM14) full speed signal CC-X count signal CC-V count signal	1: half speed 1: full speed 1: count increase 1: count increase
P008	15-8	not used	
	$\begin{aligned} & 7 \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	internal signal internal signal internal signal internal signal control switch (SW2) detection signal not used internal signal download mode signal	$0: \mathrm{ON}$ download mode
P009	15-8	not used	
	7 6 5 4 3 2 1 0	for factory adjustment not used not used for factory adjustment original exposure system cooling fan 3 (FM15) error detection original exposure system cooling fan 2 (FM14) error detection PCB check mode 1 PCB check mode 0	1: error 1: error

D. ADJUST (adjustment mode)

COPIER>ADJUST Items

Level 1 Level 2
ADJUST $\int^{\text {ADJ-XY }}$
$-\begin{aligned} & \text { - CCD } \\ & \text { - LASER }\end{aligned}$

Level 3 Settings

0 to 500

F $_{\text {EC-B }}^{\text {EC-G }}$	---
EC-R	---
T $^{\text {T-V00 }}$	0 to 255
T-VFF	0 to 255

- P3-V00 0 to 255

P3-VFF-1 0 to 255
-P3-VFF-2 0 to 255
-P3-VFF-3 0 to 255

P3-VFF-4 0 to 255

- POWER

Description
adjusts the image read start position (X direction; units of 0.1 mm)
adjusts the image read start position (Y direction; in units of 0.1 mm) adjusts measurement position for shading correction from the standard white plate (in units of 0.1 mm)
adjusts the period of acceleration for the original scanner motor
for future expansion
for future expansion
for future expansion
enters the laser control initial value at V00 for text mode (800 lines) as for laser unit replacement
enters the laser control initial value at VFF for text mode (800 lines) as for laser unit replacement enters the laser control initial value at V00 for photo mode (400 lines) as for laser unit replacement
enters the laser control initial value at VFF (45%) for photo mode (400 lines) as for laser unit replacement enters the laser control initial value at VFF (55%) for photo mode (400 lines) as for laser unit replacement
enters the laser control initial value at VFF (65\%) for photo mode (400 lines) as for laser unit replacement enters the laser control initial value at VFF (70%) for photo mode (400 lines) as for laser unit replacement
turns on the laser output for laser power adjustment (OK key to start, Stop key to stop) turns on the laser output for a check on TV00 (OK key to start, Stop key to stop) turns on the laser output for a check on TVFF (OK key to start, Stop key to stop) turns on the laser output for a check on P3V00 (OK key to start, Stop key to stop) turns on the laser output for a check on P3-VFF-1 (OK key to start, Stop key to stop) turns on the laser output for a check on P3-VFF-2 (OK key to start, Stop key to stop) turns on the laser output for a check on P3-VFF-3 (OK key to start, Stop key to stop) turns on the laser output for a check on P3-VFF-4 (OK key to start, Stop key to stop)

- DENS	T SGNL-Y	0 to 1023
	- SGNL-M	0 to 1023
	- SGNL-C	0 to 1023
	- REF-Y	0 to 1023
	- REF-M	0 to 1023
	- REF-C	0 to 1023
	- SIGG-Y	0 to 255
	- SIGG-M	0 to 255
	- SIGG-C	0 to 255
	- RGAIN-K	0 to 255
	- D-Y-TRGT	0 to 1023
	- D-M-TRG	0 to 1023
	- D-C-TRGT	0 to 1023
	- PTOFST-Y	-127 to +12
	- PTOFST-M	-127 to +12
	- PTOFST-C	-127 to +12
	-PTOFST-K	-127 to +12
	- D-REF-Y	0 to 1023
	- D-REF-M	0 to 1023
	- D-REF-C	0 to 1023
	- D-REF-K	0 to 1023
	- D-REF-4	0 to 1023

concentration signal of Y toner during INIT for ATR control
concentration signal of M toner during INIT for ATR control
concentration signal of C toner during INIT for ATR control
concentration reference signal of Y toner during INIT for ATR control concentration reference signal of M toner during INIT for ATR control concentration reference signal of C toner during INIT for ATR control gain for concentration reference signal of Y toner during ATR control gain for concentration reference signal of M toner during ATR control gain for concentration reference signal of C toner during ATR control gain for concentration reference signal of Bk toner during toner concentration control present value of the concentration target of Y toner during ART control present value of the concentration target of M toner during ART control present value of the concentration target of C toner during ART control correction value (\%) for the laser output of Y toner during ART control correction value (\%) for the laser output of M toner during ART control correction value (\%) for the laser output of C toner during ART control correction value (\%) for the laser output of Bk toner during ART control reference signal value for the concentration sensor of Y toner in relation to the reflection intensity of light from the photosensitive drum (upon initialization) reference signal value for the concentration sensor of M toner in relation to the reflection intensity of light from the photosensitive drum (upon initialization) reference signal value for the concentration sensor of C toner in relation to the reflection intensity of light from the photosensitive drum (upon initialization) reference signal value for the concentration sensor of Bk toner in relation to the reflection intensity of light from the photosensitive drum (upon initialization) reference signal value for the concentration sensor of all toners in relation to the reflection intensity of light from the photosensitive drum (upon initialization)

reference signal value for the concentration sensor of Y toner in relation to the reflection intensity of light from the photosensitive drum (upon initialization)
reference signal value for the concentration sensor of M toner in relation to the reflection intensity of light from the photosensitive drum (upon initialization) reference signal value for the concentration sensor of C toner in relation to the reflection intensity of light from the photosensitive drum (upon initialization) reference signal value for the concentration sensor of Bk toner in relation to the reflection intensity of light from the photosensitive drum (upon initialization) reference signal value for the concentration sensor of all toners in relation to the reflection intensity of light from the photosensitive drum (upon initialization) reference signal value of Y toner on the photosensitive drum during INIT for ATR control
reference signal value of M toner on the photosensitive drum during INIT for ATR control
reference signal value of C toner on the photosensitive drum during INIT for ATR control
reference signal value of Bk toner on the photosensitive drum during INIT for ATR control
signal value of Y toner on the photosensitive drum during INIT for ATR control signal value of M toner on the photosensitive drum during INIT for ATR control signal value of C toner on the photosensitive drum during INIT for ATR control signal value of Bk toner on the photosensitive drum during INIT for ATR control gain for concentration reference signal of Bk toner during ATR control correction of the patch data gain for ATR control when INIT-Y is executed correction of the patch data gain for ATR control when INIT-M is executed correction of the patch data gain for ATR control when INIT-C is executed correction of the patch data gain for ATR control when INIT-K is executed correction of the patch gain for toner density control when INIT-Y is executed correction of the patch gain for toner density control when INIT-M is executed correction of the patch gain for toner density control when INIT-C is executed

	- RGAN-P-K	0 to 255	correction of the patch gain for toner density control when INIT-K is executed
- V-CONT	T VBACK-Y	-4 to +4	Y color adjustment for de-fogging potential (reference: 0)
	- VBACK-M	-4 to +4	M color adjustment for de-fogging potential (reference: 0)
	- VBACK-C	-4 to +4	C color adjustment for de-fogging potential (reference: 0)
	- VBACK-K	-4 to +4	Bk color adjustment for de-fogging potential (reference: 0)
	- EPOTOFST	0 to 1023	potential offset value (reference: 0)
	RF-CRT-Y	-25 to +25	offset value adjustment (\%) for Y laser strength
	- PF-CRT-M	-25 to +25	offset value adjustment (\%) for M laser strength
	-PF-CRT-C	-25 to +25	offset value adjustment (\%) for C laser strength
	- PF-CRT-K	-25 to +25	offset value adjustment (\%) for Bk laser strength
- PASCAL	- OFST-P-Y	-127 to +128	target value setting of Y for high-density areas during auto gradation correction
	- OFST-P-M	-127 to +128	target value setting of M for high-density areas during auto gradation correction
	- OFST-P-C	-127 to +128 -127 to +128	target value setting of C for high-density areas during auto gradation correction target value setting of Bk for high-density areas during auto gradation correction
- COLOR	T ADJ-Y	-8 to +8	color balance adjustment of Y for the user (reference: 0)
	- ADJ-M	-8 to +8	color balance adjustment of M for the user (reference: 0)
	- ADJ-C	-8 to +8	color balance adjustment of C for the user (reference: 0)
	- ADJ-K	$-8 \text { to }+8$	color balance adjustment of Bk for the user (reference: 0)
	- OFST-Y	-16 to +16	color balance adjustment and density of Y light areas
	- OFST-M	-16 to +16	color balance adjustment and density of M light areas
	- OFST-C	-16 to +16	color balance adjustment and density of C light areas
	- OFST-K	-16 to +16	color balance adjustment and density of Bk light areas
	- P-ADJ-Y	-8 to +8	color balance adjustment of Y for output from an external image controller
	- P-ADJ-M	-8 to +8	color balance adjustment of M for output from an external image controller
	- P-ADJ-C	-8 to +8	color balance adjustment of C for output from an external image controller
	- P-ADJ-K	-8 to +8	color balance adjustment of Bk for output from an external image controller
	- P-OFST-Y	-16 to +16	color balance adjustment of Y light areas for output from an external image controller

Cont'd

- TR-L1	-4 to +4	Environment B (B-ZONE) for thin paper, transfer charging bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-L2	-4 to +4	for thin paper, transfer charging bias adjustment for copying on the 2nd side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-N1	-4 to +4	for plain paper, transfer charging bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-N2	-4 to +4	for plain paper, transfer charging bias adjustment for copying on the 2nd side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-T1	-4 to +4	for thick paper, transfer charging bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-T2	-4 to +4	for thick paper, transfer charging bias adjustment for copying on the 2nd side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-UT1	-4 to +4	for extra thick paper, transfer charging bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-UT2	-4 to +4	for extra thick paper, transfer charging bias adjustment for copying on the 2nd side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-S1-1	-4 to +4	for special paper 1 , transfer charging bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-S2-1	-4 to +4	for special paper 2 , transfer charging bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-OHP	-4 to +4	for transparencies, transfer charging bias adjustment (in units of $\mu \mathrm{A}$)
- TR-POST	-4 to +4	for postcards, transfer charging bias adjustment (in units of $\mu \mathrm{A}$)

- TR-L1	-4 to +4	Environment C (C-ZONE) for thin paper, transfer charging bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-L2	-4 to +4	for thin paper, transfer charging bias adjustment for copying on the 2nd side of a double-sided copy (in units of $50 \mu \mathrm{~A}$)
- TR-N1	-4 to +4	for plain paper, transfer charging bias adjustment for single-sided copying or copying on the 1 st side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-N2	-4 to +4	for plain paper, transfer charging bias adjustment for copying on the 2nd side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-T1	-4 to +4	for thick paper, transfer charging bias adjustment for single-sided copying or copying on the 1 st side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-T2	-4 to +4	for thick paper, transfer charging bias adjustment for copying on the 2nd side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-UT1	-4 to +4	for extra thick paper, transfer charging bias adjustment for single-sided copying or copying on the 1 st side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-UT2	-4 to +4	for extra thick paper, transfer charging bias adjustment for copying on the 2 nd side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-S1-1	-4 to +4	for special paper 1 , transfer charging bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-S2-1	-4 to +4	for special paper 2 , transfer charging bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of $\mu \mathrm{A}$)
- TR-OHP	-4 to +4	for transparencies, transfer charging bias adjustment (in units of $\mu \mathrm{A}$)
- TR-POST	-4 to +4	for postcards, transfer charging bias adjustment (in units of $\mu \mathrm{A}$)

[^1]
Cont'd

HV-SP	-6 to 0	adjustment of separation DC high-voltage output (in units of $50 \mu \mathrm{~A})$
Conter		

Cont'd

| SP-L1 | -6 to 0 | Environment A (A-ZONE)
 for thin paper, separation charging bias
 adjustment for single-sided copying or
 copying on the 1st side of a double-sided
 copy (in units of 50 $\mu \mathrm{A})$ |
| :--- | :--- | :--- | :--- |
| for thin paper, separation charging bias | | |
| adjustment for copying on the 2nd side of a | | |
| double-sided copy (in units of 50 $\mu \mathrm{AA})$ | | |

Cont'd

- SP-L1	-6 to 0	Environment C (C-ZONE) for thin paper, separation charging bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of $50 \mu \mathrm{~A}$)
- SP-L2	-6 to 0	for thin paper, separation charging bias adjustment for copying on the 2nd side of a double-sided copy (in units of $50 \mu \mathrm{~A}$)
-SP-N1	-6 to 0	for plain paper, transfer charging bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of $50 \mu \mathrm{~A}$)
-SP-N2	-6 to 0	for plain paper, transfer charging bias adjustment for copying on the 2nd side of a double-sided copy (in units of $50 \mu \mathrm{~A}$)
-SP-T1	-6 to 0	for thick paper, transfer charging bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of $50 \mu \mathrm{~A}$)
-SP-T2	-6 to 0	for thick paper, transfer charging bias adjustment for copying on the 2nd side of a double-sided copy (in units of $50 \mu \mathrm{~A}$)
- SP-UT1	-6 to 0	for extra thick paper, separation charging bias adjustment for single-sided copying or copying on the 1 st side of a double-sided copy (in units of $50 \mu \mathrm{~A}$)
- SP-UT2	-6 to 0	for extra thick paper, separation charging bias adjustment for copying on the 2nd side of a double-sided copy (in units of $50 \mu \mathrm{~A}$)
- SP-S1-1	-6 to 0	for special paper 1, separation charging bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of $50 \mu \mathrm{~A}$)
- SP-S2-1	-6 to 0	for special paper 2, separation charging bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of $50 \mu \mathrm{~A}$)
- SP-OHP	-6 to 0	for transparencies, separation charging bias adjustment (in units of $50 \mu \mathrm{~A}$)
- SP-POST	-6 to 0	for postcards, separation charging bias adjustment (in units of $50 \mu \mathrm{~A}$)

- SP-ON-N1	1 to 32	for plain paper, separation re-charging ON environment adjustment value for singlesided copying or copying on the 1 st side of a double-sided copy (in units of $50 \mu \mathrm{~A}$)
- SP-ON-N2	1 to 32	for plain paper, separation re-charging ON environment adjustment value for copying on the 2 nd side of a double-sided copy
- SP-ON-L1	1 to 32	for thin paper, separation re-charging ON environment adjustment value for singlesided copying or copying on the 1 st side of a double-sided copy)
- SP-ON-L2	1 to 32	for thin paper, separation re-charging ON environment adjustment value for copying on the 2 nd side of a double-sided copy
- SP-ON-T1	1 to 32	for thick paper, separation re-charging ON environment adjustment value for singlesided copying or copying on the 1st side of a double-sided copy
- SP-ON-T2	1 to 32	for thick paper, separation re-charging ON environment adjustment value for copying on the 2 nd side of a double-sided copy
- SP-ONUT1	1 to 32	for extra thick paper, separation re-charging ON environment adjustment value for single-sided copying or copying on the 1st side of a double-sided copy
- SP-ONUT2	1 to 32	for extra thick paper, separation re-charging ON environment adjustment value for copying on the 2 nd side of a double-sided copy
- SP-ON-S1	1 to 32	for special paper 1, separation re-charging ON environment adjustment value for single-sided copying or copying on the 1st side of a double-sided copy
- SP-ON-S2	1 to 32	for special paper 2 , separation re-charging ON environment adjustment value for single-sided copying or copying on the 1st side of a double-sided copy
- SP-ONOHP	1 to 32	for transparencies, separation re-charging ON environment adjustment value
\square SP-ON-PT	1 to 32	for postcards, separation re-charging ON environment adjustment value

Cont'd
$\left.\begin{array}{lll}\text { HV-IEL } & -8 \text { to } 0 & \begin{array}{l}\text { internal static eliminator high-voltage } \\ \text { output adjustment (in units of } 0.5 \mathrm{kV} \text {) }\end{array} \\ \text { - IEL-L1 } & -8 \text { to } 0 & \begin{array}{l}\text { Environment A (A-ZONE) } \\ \text { for thin paper, internal static eliminator bias } \\ \text { adjustment for single-sided copying or } \\ \text { copying on the 1st side of a double-sided } \\ \text { copy (in units of } 0.5 \mathrm{kV})\end{array} \\ \text { for thin paper, internal static eliminator bias } \\ \text { adjustment for copying on the 2nd side of a a } \\ \text { double-sided copy (in units of } 0.5 \mathrm{kV} \text {) } \\ \text { for plain paper, internal static eliminator } \\ \text { bias adjustment for single-sided copying or } \\ \text { copying on the 1st side of a double-sided }\end{array}\right\}$
Cont'd

- IEL-L1	-8 to 0	Environment B (B-ZONE) for thin paper, internal static eliminator bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of 0.5 kV)
- IEL-L2	-8 to 0	for thin paper, internal static eliminator bias adjustment for copying on the 2nd side of a double-sided copy (in units of 0.5 kV)
- IEL-N1	-8 to 0	for plain paper, internal static eliminator bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of 0.5 kV)
- IEL-N2	-8 to 0	for plain paper, internal static eliminator bias adjustment for copying on the 2nd side of a double-sided copy (in units of 0.5 kV)
- IEL-T1	-8 to 0	for thick paper, internal static eliminator bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of 0.5 kV)
- IEL-T2	-8 to 0	for thick paper, internal static eliminator bias adjustment for copying on the 2nd side of a double-sided copy (in units of 0.5 kV)
- IEL-UT1	-8 to 0	for extra thick paper, internal static eliminator bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of 0.5 kV)
- IEL-UT2	-8 to 0	for extra thick paper, internal static eliminator bias adjustment for copying on the 2nd side of a double-sided copy (in units of 0.5 kV)
- IEL-S1-1	-8 to 0	for special paper 1, internal static eliminator bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of 0.5 kV)
- IEL-S2-1	-8 to 0	for special paper 2, internal static eliminator bias adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of 0.5 kV)
- IEL-OHP	-8 to 0	for transparencies, internal static eliminator bias adjustment (in units of 0.5 kV)
- IEL-POST	-8 to 0	for postcards, internal static eliminator bias adjustment (in units of 0.5 kV)

Cont'd
Cont'd

	-5 to +5	attraction high-voltage output adjustment (in units of $2 \mu \mathrm{~A}$)
AV-ATT	Environment A (A-ZONE) for thin paper, attraction high-voltage output adjustment for single-sided copying or copying on the 1st side of a double-sided copy (in units of 2 μ A) for thin paper, attaction high-voltage output adjustment for copying on the 2nd side of a double-sided copy (in units of 2	
AT)	-5 to +5	

Cont'd
$\left.\begin{array}{lll} & -5 \text { to }+5 & \begin{array}{l}\text { Environment } \\ \text { for thin paper, attraction high-voltage } \\ \text { output adjustment for single-sided copying } \\ \text { or copying on the 1st side of a double-sided } \\ \text { copy (in units of } 2 \mu \text { A) }\end{array} \\ \text { for thin paper, attraction high-voltage } \\ \text { output adjustment for copying on the 2nd } \\ \text { side of a double-sided copy (in units of 2 }\end{array}\right\}$
Cont'd

- DOC-REC		$\begin{aligned} & -99 \text { to }+99 \\ & 0 \text { to } 31 \end{aligned}$	fine-adjustment of the original detection area adjustment of the slice level for original detection
-FEED-ADJ	ATT-T-A	-10 to +10	adjustment of side A attraction timing for the transfer drum
	- ATT-T-B	-10 to +10	adjustment of side B attraction timing for the transfer drum
	-RG-XA	-47 to +47	adjustment of registration in sub scanning direction of side A on the transfer drum
	- RG-XB	-47 to +47	adjustment of registration in sub scanning direction of side B on the transfer drum
	- RG-Y	-70 to +70	adjustment of registration in main scanning direction on the transfer drum
	- TR-DLY-A	-10 to +10	Use it to adjust the transfer delay on side A of the transfer drum.
	- TR-DLY-B	-10 to +10	Use it to adjust the transfer delay on side B of the transfer drum.
	- ATT-CHK	1 to 3	specification of position of attraction on the transfer drum during ATT-ON (1: 2-sheet retention of sides B and $A ; 2$: retention on side $\mathrm{A}, 3$: retention on side B)
	- ATT-ON	---	executes attraction of copy paper to the transfer drum according to ATTCHK (OK key to start; auto stop)
	- RGST-CHK	1 to 3	specifies position of attraction on the transfer drum during RGST-ON (1: 2 -sheet retention on sides B and A, 2: retention on side A, 3: retention on side B)
	- RGST-ON	---	executes printing for checking registration (retention side) using C according to RGSTCHK (OK key to start; auto stop)
	- TR1-CHK	1 to 3	specifies position of attraction on the transfer drum during TR1-ON (1:2-sheet retention of sides B and A, 2: retention on side A, 3: retention on side B)
	- TR2-CHK	1 to 3	specifies position of attraction on the transfer drum during TR2-ON (1: 2 -sheet retention of sides B and A, 2: retention on side A, 3: retention on side B)
	- TR1-ON	---	executes printing for checking the leading edge margin (1 mm) according to TR1-CHK (OK key to start; auto stop)
	- TR2-ON	---	executes printing for checking the leading edge margin (8 mm) according to TR2-CHK (OK key to start; auto stop)
	- TR-END-A	0 to 25	adjusts the falling edge (trailing edge margin) of transfer high voltage for side A retention
	\bigcirc TR-END-B	0 to 25	adjusts the falling edge (trailing edge margin) of transfer high voltage for side B retention

Cont'd
fine-adjustment of the original detection area fie-ajustment of the original detection area fine-adjustment of the original detection area adjustment of the slice level for original detection
adjustment of side A attraction timing for the transfer drum
adjustment of side B attraction timing for the transfer drum
adjustment of registration in sub scanning direction of side A on the transfer drum disent of registration in sub scanning adjustment of registration in main scanning direction on the transfer drum
Use it to adjust the transfer delay on side A of transfer drum. specification of position of attraction on the transfer drum during ATT-ON (1: 2-sheet retention of sides B and A; 2: retention on side A , 3 . retention on side B) transfer drum according to ATTCHK (OK key to start; auto stop)
specifies position of attraction on the transfer um during RGST-ON (1: 2-sheet retention reterion on side B) executes printing for checking registration (retention side) using C according to RGSTCHK (OK key to start; auto stop) difle porition sides B and $\mathrm{A}, 2$: retention on side $\mathrm{A}, 3$: retention on side B)
specifies position of attraction on the transfer drum during TR2-ON (1: 2-sheet retention of sides B and A , 2. retenion on side A , 3 . ide B
executes printing for checking the leading edge margin (1 mm) according to TR1-CHK (OK key to start; auto stop)
en prining for check g the leading edge magn (8 min) according to TR2-CHK adjusts the falling edge (trailing edge margin) of transfer high voltage for side A retention of transfer high voltage for side B retention

- CST-ADJ	T C2-STMTR	0 to 1023
	- C2-A4R	0 to 1023
	- C3-STMTR	0 to 1023
	- C3-A4R	0 to 1023
	- MF-A4R	0 to 1023
	- MF-A6R	0 to 1023
	- MF-A4	0 to 1023
	- C1-LVOL	0 to 1023
	- C1-HVOL	0 to 1023
	- C2-LVOL	0 to 1023
	- C2-HVOL	0 to 1023
	- C3-LVOL	0 to 1023
	- C3-HVOL	0 to 1023
- MISC	T SEG-ADJ	-3 to +3
	- K-ADJ	-3 to +3
	- ATT-RTN2	0 to 1
	- ATT-RTN3	0 to 1
	- ATT-RTN4	0 to 1
	- BC-ADJ	-3 to +3
	- ACS-ADJ	0 to 1

Cont'd
paper width basic value adjustment for STMTR in cassette 2
paper width basic value adjustment for A4R in cassette 2
paper width basic value adjustment for STMTR in cassette 3
paper width basic value adjustment for A4R in cassette 3
paper width basic value adjustment for A4R in the multifeeder
paper width basic value adjustment for A6R in the multifeeder
paper width basic value adjustment for A4 in the multifeeder
slice level input for the paper level detecting VR for cassette 1 (for 50 sheets)
slice level input for the paper level detecting VR for cassette 1 (for 275 sheets)
slice level input for the paper level detecting VR for cassette 2 (for 50 sheets)
slice level input for the paper level detecting VR for cassette 2 (for 275 sheets)
slice level input for the paper level detecting VR for cassette 3 (for 50 sheets)
slice level input for the paper level detecting VR for cassette 3 (for 275 sheets)
separation level adjustment between text and photo in text/photo mode or text/silver halide mode
for plain paper, addition of a rotation for attraction rotation for signal-sided copying and copying on the 1 st side of a double-sided copy (full color)
for plain paper, addition of a rotation for attraction rotation for copying on the 2 nd side of a double-sided copy (full color) for thin paper, addition of a rotation for attraction rotation for signal-sided copying and copying on the 1 st side of a double-sided copy (full color)
for thin paper, addition of a rotation for attraction rotation for copying on the 2 nd side of a double-sided copy (full color) adjustment of color identification range for non-pattern processing adjustment of color recognition sensitivity for ACS
Cont'd
Cont'd
Cont'd

| | 4 to +4 | Environment
 for thin paper, separation charging AC bias
 adjustment for single-sided copying or
 copying on the 1st side of a double-sided |
| :--- | :--- | :--- | :--- |
| copy (in units of 0.5 kV) | | |
| for thin paper, separation charging AC bias | | |
| adjustment for copying on the 2nd side of a | | |
| double-sided copy (in units of 0.5 kV) | | |
| for plain paper, separation charging bias | | |
| adjustment for single-sided copying or | | |
| copying on the 1st side of a double-sided | | |

| | -4 to +4 | Environment C (C-ZONE)
 for thin paper, separation charging AC bias
 adjustment for single-sided copying or
 copying on the 1st side of a double-sided
 copy (in units of 0.5 kV) |
| :--- | :--- | :--- | :--- |
| for thin paper, separation charging AC bias | | |
| adjustment for copying on the 2nd side of a | | |
| double-sided copy (in units of 0.5 kV) | | |
| for plain paper, separation charging bias | | |
| adjustment for single-sided copying or | | |
| copying on the 1st side of a double-sided | | |
| copy (in units of 0.5 kV) | | |

FEEDER>ADJUST Items

Level 1	Level 2	Level 3	Settings	Description
ADJUST		T ADJ-RX	0 to 255	adjustment of registration in sub scanning direction with the multifeeder in use (in units of 0.1 mm)
		- ADJ-RY	0 to 255	adjustment of registration in main scanning direction with the multifeeder in use (in units of 0.1 mm)
		- ADJ-DX	0 to 255	adjustment of registration in sub scanning direction with the multifeeder in use in manual feed mode (in units of 0.1 mm)
		$\square_{\text {ADJ-DY }}$	0 to 255	adjustment of registration in main scanning direction with the multifeeder in use in manual feed mode (in units of 0.1 mm)

PRJ>ADJUST Items

Level 1	Level 2	Level 3	Settings	Description
ADJUST		- DS-PRJ	0 to 31	adjustment of the slice level for the projection area with the projector in use
		- DS-OHP	0 to 31	adjustment of the slice level for original detection from the reference sheet position of film with the projector in use
		- RD-XS	-300 to +300	adjustment of the read area with original detection OFF and with the projector in use (in units of 0.06 mm ; standard: 0)
		- RD-XE	-300 to +300	adjustment of the read area with original detection OFF and with the projector in use (in units of 0.06 mm ; standard: 0)
		- RD-YS	-300 to +300	adjustment of the read area with original detection OFF and with the projector in use (in units of 0.06 mm ; standard: 0)
		- RD-YE	-300 to +300	adjustment of the read area with original detection OFF and with the projector in use (in units of 0.06 mm ; standard: 0)
		- DA-XS	-99 to +99	adjustment of the read area with original detection ON and with the projector in use (in units of 0.11 mm ; standard: 0)
		- DA-XE	-99 to +99	adjustment of the read area with original detection ON and with the projector in use (in units of 0.11 mm ; standard: 0)
		- DA-YS	-99 to +99	adjustment of the read area with original detection ON and with the projector in use (in units of 0.06 mm ; standard: 0)
		- DA-YE	-99 to +99	adjustment of the read area with original detection ON and with the projector in use (in units of 0.06 mm ; standard: 0)

$\left.\begin{array}{|lll}\text { - NEGA-B } & -100 \text { to }+100 & \begin{array}{l}\text { adjustment of the target value for shading } \\ \text { correction when copying negative film with } \\ \text { the projector in use (a higher setting darkens }\end{array} \\ \text { Y area) } \\ \text { NAGA-G } & -100 \text { to }+100 & \begin{array}{l}\text { adjustment of the target value for shading } \\ \text { correction when copying negative film with } \\ \text { the projector in use (a higher setting darkens } \\ \text { M area) } \\ \text { adjustment of the target value for shading } \\ \text { correction when copying negative film with } \\ \text { the projector in use (a higher setting darkens }\end{array} \\ \text { C area) } \\ \text { adjustment of the target value for shading } \\ \text { correction when copying positive film with } \\ \text { the projector in use (a higher setting darkens }\end{array}\right\}$

- N-DA-XE	-99 to +99
N-DA-YS	-99 to +99
- N-DA-YE	-99 to +99
- O-DA-XS	-99 to +99
O-DA-XE	-99 to +99
O-DA-YS	-99 to +99
O-DA-YE	-99 to +99
CHNGR-X	-99 to +99
CHNGR-Y	-99 to +99

adjustment of frame erasing width for negative film with the projector in use (in units of 0.6 mm ; standard: 50) adjustment of frame erasing width for negative film with the projector in use (in units of 0.6 mm ; standard: 50) adjustment of frame erasing width for negative film with the projector in use (in units of 0.6 mm ; standard: 50) adjustment of frame erasing width for transparencies with the projector in use (in units of 0.6 mm ; standard: 24) adjustment of frame erasing width for transparencies with the projector in use (in units of 0.6 mm ; standard: 8) adjustment of frame erasing width for transparencies with the projector in use (in units of 0.6 mm ; standard: 32) adjustment of frame erasing width for transparencies with the projector in use (in units of 0.6 mm ; standard: 24)
adjustment of position in main scanning direction with the rotary changer of the projector in use (in units of 0.6 mm ; standard: 0)
adjustment of position in sub scanning direction with the rotary changer of the projector in use (in units of 0.6 mm ; standard: 0)

EDITOR>ADJUST Items

Level 1	Level 2	Level 3	Settings	Description
ADJUST		- ED-X	-99 to +99	adjustment of input coordinates in editor sub scanning (X) direction (in units of about 0.13 mm; standard: 0)
		- ED-Y	-99 to +99	adjustment of input coordinates in editor main scanning (Y) direction (in units of about 0.13 mm ; standard: 0)
		- LOOP-MB	0 to 3	adjustment of processing used when reading images into memory for coloring in area select/color create mode (standard: 0; a higher setting makes filling of gaps easier)
		- LOOP-TH	0 to 255	adjustment of the binary slice level used when reading images into memory for coloring in area select/color create mode (standard: 192; a higher setting enables reading of fine lines)
		- MRK-MB	0 to 3	adjustment of processing used when reading images into memory for marking/pointing (standard: 0; a higher setting makes filling of gaps easier)
		- MRK-TH	0 to 255	adjustment of the binary slice level used when reading images into memory for marking/pointing (standard: 128; a higher setting enables reading of fine lines)

ADJ-XY
Indicates the image read start position.

| Level 3 | Description | Remarks |
| :--- | :--- | :--- | :--- |
| ADJ-X
 (Note 1) | Use it to make adjustments so that the image read
 position matches the reference point on the
 copyboard glass.
 Fine-adjusts the distance between the original
 scanner HP sensor to the read start position.
 • Unit: number of steps from the stepping motor
 - Make adjustments as shown in the next page. | -200 to +200
 $(-3.9$ to $+3.9 \mathrm{~mm})$
 Unit: about 0.107 mm |

Level 3	Description	Remarks
ADJ-S (Note 1)	Use it to fine-adjust the position at which data is collected for shading correction from the standard white plate. - Unit: number of steps from the stepping motor -Scratches or dirt on the standard plate can cause vertical white lines on copies. To correct the problem, shift the point of measurement using this item.0 to 45 $(0$ to 4.8 mm$)$ Unit: about 0.107 mm	
ADJ-J		
(Note 1)		

Note 1: Execute this mode upon replacement of a PCB or initialization of the RAM. The settings will be returned to standard settings, requiring you to enter the appropriate settings. Be sure to record any new settings on the service label.

Adjusting the Image Read Start Position

Be sure to check the present point of attraction before starting the work.

1) Turn off the original detection mechanism before starting service mode.
2) Bring up the ADJ-XY screen, and press the Copy Start key.

- Appropriate copying mode will automatically be set, and a copy is made with a shift of about 50 mm as shown.

3) If any part of the image is missing, decrease the setting of ADJ-X, ADJ-Y.
4) If an area outside the image is copied, increase the setting of ADJ-X, ADJ-Y.

Figure 4-11

Adjusts the CCD

Level 3	Description	Remarks
EC-B	For future expansion.	
EC-G		
EC-R		

LASER

Adjusts the laser system.

Level 3	Description	Remarks
T-V00	Use it to enter the laser control initial value at V00 for text mode (800 lines) as upon replacement of the laser unit.	0 to 255
T-VFF	Use it to enter the laser control initial value at VFF for text mode (800 lines) as upon replacement of the laser unit.	
P3-V00	Use it to enter the laser control initial value at V00 for photo mode (400 lines) as upon replacement of the laser unit.	
P3-VFF-1	Use it to enter the laser control initial value at VFF (45%) for photo mode (400 lines) as upon replacement of the laser unit.	
P3-VFF-2	Use it to enter the laser control initial value at VFF (55%) for photo mode (400 lines) as upon replacement of the laser unit.	
P3-VFF-3	Use it to enter the laser control initial value at VFF (65\%) for photo mode (400 lines) as upon replacement of the laser unit.	
P3-VFF-4	Use it to enter the laser control initial value at VFF (70\%) for photo mode (400 lines) as upon replacement of the laser unit.	
POWER	Use it to turn on the laser output when adjusting the laser power.	Press the OK key to start and the Stop key to stop.
T-V00-ON	Use it to turn on the laser output when checking TV00.	
T-VFF-ON	Use it to turn on the laser output when checking TVFF.	
P3V00-ON	Use it to turn on the laser output when checking P3V00.	
P3-V1-ON	Use it to turn on the laser output when checking P3-VFF-1.	
P3-V2-ON	Use it to turn on the laser output when checking P3-VFF-2.	
P3-V3-ON	Use it to turn on the laser output when checking P3-VFF-3.	
P3-V4-ON	Use it to turn on the laser output when checking P3-VFF-4.	

Note 1: Execute this mode upon replacement of a CPU PCB or initialization of the RAM. The settings will be returned to standard settings, requiring you to enter the appropriate settings. Be sure to record any new settings on the service label.

Adjusts items related to developer concentration.

Level 3	Description	Remarks
SGNL-Y SGNL-M SGNL-C (Note 1)	Use it to adjust the toner concentration signal value of each color during INIT for ATR control.	0 to 1023
REF-Y REF-M REF-C (Note 1)	Use it to adjust the toner concentration reference signal value for each color during INIT for ATR control.	0 to 1023
SIGG-Y SIGG-M SIGG-C (Note 1)	Use it to adjust the toner concentration reference signal gain value for each color during ATR control.	0 to 255
RGAIN-K (Note 1)	Use it to adjust the toner concentration reference signal gain value for Bk during toner concentration control.	0 to 255
D-Y-TRGT D-M-TRGT D-C-TRGT (Note 1)	Use it to adjust the toner concentration target present value of each color during ATR control.	0 to 1023
PTOFST-Y PTOFST-M PTOFST-C PTOFST-K (Note 1)	Use it to adjust the correction value (\%) of the laser output of each color during ATR control.	-127 to +128
D-REF-Y D-REF-M D-REF-C D-REF-K D-REF-4 (Not 1)	Use it to adjust the reference signal value (during initialization) of each toner concentration sensor in relation to light reflected by the photosensitive drum. Use it to adjust the reference signal value (during initialization) of the toner concentration sensor for all colors in relation to light reflected by the photosensitive drum.	0 to 1023

Note 1: Execute this mode upon replacement of a CPU PCB or initialization of the RAM. The settings will be returned to standard settings, requiring you to enter the appropriate settings. Be sure to record any new settings on the service label.

Level 3	Description	Remarks
D-SGNL-Y D-SGNL-M D-SGNL-C D-SGNL-K D-SGNL-4 (Note 1)	Use it to adjust the signal value (during initialization) for the toner concentration sensor of each color in relation to light reflected by the photosensitive drum. Use it to adjust the signal value (during initialization) for the toner concentration sensor of all colors in relation to light reflected by the photosensitive drum.	0 to 1023
P-REF-Y P-REF-M P-REF-C P-REF-K (Note 1)	Use it to adjust the toner concentration reference signal value for each color on the photosensitive drum during INIT for ATR control.	0 to 1023
P-SGNL-Y P-SGNL-M P-SGNL-C P-SGNL-K (Note 1)	Use it to adjust the toner concentration reference signal value for each color on the photosensitive drum during INIT for ATR control.	0 to 1023
SIGG-K (Note 1)	Use it to adjust the gain for the Bk toner concentration reference signal during ATR control.	0 to 255
$\begin{aligned} & \text { SIGG-P-M } \\ & \text { SIGG-P-C } \\ & \text { SIGG-P-Y } \\ & \text { SIGG-P-K } \\ & \text { (Note 1) } \end{aligned}$	correction of the patch gain for ATR control when INIT-x (mono INIT) is executed	0 to 255
RGAN-P-M RGAN-P-C RGAN-P-Y RGAN-P-K (Note 1)	correction of the patch gain for toner density control when INIT-x (mono INIT) is executed	0 to 255

Note 1: Execute this mode upon replacement of a CPU PCB or initialization of the RAM. The settings will be returned to standard settings, requiring you to enter the appropriate settings. Be sure to record any new settings on the service label.

V-CONT

COPIER>ADJUST
Adjusts the photosensitive drum surface potential contrast.

Level 3	Description	Remarks
VBACK-Y	Use it to adjust the de-fogging potential for each	-4 to +4
VBACK-M		
color.	Standard: 0	
+ side: darkens		
VBACK-C		- side: lightens

PASCAL

Adjusts automatic gradation correction.

Level 3	Description	Remarks
OFST-P-Y	Use it to adjust the target value of each color in	-127 to +128
OFST-P-M	high-density areas during auto gradation correction.	
OFST-P-C		
OFST-P-K		

COLOR

Adjusts the color balance.

Level 3	Description	Remarks
$\begin{aligned} & \text { ADJ-Y } \\ & \text { ADJ-M } \\ & \text { ADJ-C } \\ & \text { ADJ-K } \\ & \text { (Note 1) } \end{aligned}$	Use it to correct the color balance of each color selected by the user. - Be sure to set the user color balance to '0' before using this item. - Be sure to follow the Image Adjustment Basic Procedure.	$-8 \text { to }+8$ Standard: $\mathrm{M}=0, \mathrm{C}=0, \mathrm{Y}=0, \mathrm{~K}=0$ + side: darkens - side: lightens
OFST-Y OFST-M OFST-C OFST-K (Note 1)	Use it to adjust the color balance and density of light areas of each color. - Be sure to follow the Image Adjustment Basic Procedure. - To increase the degree of reproduction of extremely light areas, decrease the setting.	-16 to +16 Standard: $\mathrm{M}=0, \mathrm{C}=0, \mathrm{Y}=0, \mathrm{~K}=0$
P-ADJ-Y P-ADJ-M P-ADJ-C P-ADJ-K (Note 1)	Use it to correct the color balance of each color when output is from an external image controller. - Be sure to set the user color balance to '0' before using this mode. - Be sure to follow the Image Adjustment Basic Procedure.	$-8 \text { to }+8$ Standard: $\mathrm{M}=0, \mathrm{C}=0, \mathrm{Y}=0, \mathrm{~K}=0$ + side: darkens - side: lightens
P-OFST-Y P-OFST-M P-OFST-C P-OFST-K (Note 1)	Use it to adjust the color balance and the density of light areas of each color when the output is from an external image controller. - Be sure to follow the Image Adjustment Basic Procedure. - If fogging is noted, increase the value. - To increase the degree of reproduction of extremely light areas, decrease the setting.	-16 to +16 Standard $\mathrm{M}=0, \mathrm{C}=0, \mathrm{Y}=0, \mathrm{~K}=0$

Note 1: Execute this mode upon replacement of a CPU PCB or initialization of the RAM. The settings will be returned to standard settings, requiring you to enter the appropriate settings. Be sure to record any new settings on the service label.

Adjusts the transfer high-voltage output by condition.

Level 3	Description	Remarks
HV-TR	Use it to adjust the transfer high-voltage output.	$\begin{aligned} & \hline-4 \text { to }+4 \\ & \text { Unit: } 1.0 \mu \mathrm{~A} \end{aligned}$
TR-L1	Use it to adjust the transfer charging bias for singlesided copying and when copying on the 1st side of a double-sided copy using thin paper.	$-4 \text { to }+4$ Unit: $1.0 \mu \mathrm{~A}$ The copier may be adapted to
TR-L2	Use it to adjust the transfer charging bias when copying on the 2nd side of a double-sided copy using thin paper.	the site of installation (temperature, humidity) by changing its various settings.
TR-N1	Use it to adjust the transfer charging bias for singlesided copying and copying on the 1st side of a double-sided copy using plain paper.	For this mode, you will find settings grouped into three zones (A, B, C). On the Level
TR-N2	Use it to adjust the transfer charging bias for copying on the 2nd side of a double-sided copy using plain paper.	sure to adjust Level 3 items of the appropriate zones (TEMP, ABS-HUM).
TR-T1	Use it to adjust the transfer charging bias for onesided copying and when copying on the 1st side of a double-sided copy using thick paper.	Division by Moisture Content Zone A: 0 to 6.17 g Zone B: 6.18 to 18.40 g
TR-T2	Use it to adjust the transfer charging bias when copying on the 2nd side of a double-sided copy using thick paper.	Zone C: 18.41 g or more
TR-UT1	Use it to adjust the transfer charging bias for singlesided copying and when copying on the 1st side of a double-sided copying using extra thick paper.	
TR-UT2	Use it to adjust the transfer charging bias when copying on the 2nd side of a double-sided copy using extra thick paper.	
TR-S1-1	Use it to adjust the transfer charging bias for singlesided copying and copying on the 1st side of a double-sided copy using special paper 1 .	
TR-S2-1	Use it to adjust the transfer charging bias for singlesided copying and copying on the 1st side of a double-sided copy using special paper 2.	
TR-OHP	Use it to adjust the transfer charging bias when using transparencies.	
TR-POST	Use it to adjust the transfer charging bias when using postcards.	

Note 1: Execute this mode upon replacement of a CPU PCB or initialization of the RAM. The settings will be returned to standard settings, requiring you to enter the appropriate settings. Be sure to record any new settings on the service label.

Adjusts the separation charging high-voltage output by condition.

Level 3	Description	Remarks
HV-SP	Use it to adjust the separation DC high-voltage output.	$\begin{array}{\|l\|} \hline-6 \text { to } 0 \\ \text { Unit: } 50 \mu \mathrm{~A} \end{array}$
SP-L1	Use it to adjust the separation charging bias for single-sided copying and when copying on the 1st side of a double-sided copy using thin paper.	$\text { -6 to } 0$ Unit: $50 \mu \mathrm{~A}$ The copier may be adapted to
SP-L2	Use it to adjust the separation charging bias when copying on the 2nd side of a double-sided copy using thin paper.	the site of installation (temperature, humidity) by changing its various settings.
SP-N1	Use it to adjust the separation charging bias for single-sided copying and copying on the 1st side of a double-sided copy using plain paper.	For this mode, you will find settings grouped into three zones (A, B, C). On the Level
SP-N2	Use it to adjust the separation charging bias for copying on the 2nd side of a double-sided copy using plain paper.	sure to adjust Level 3 items of the appropriate zones (TEMP, ABS-HUM).
SP-T1	Use it to adjust the separation charging bias for onesided copying and when copying on the 1st side of a double-sided copy using thick paper.	Division by Moisture Content Zone A: 0 to 6.17 g Zone B: 6.18 to 18.40 g
SP-T2	Use it to adjust the separation charging bias when copying on the 2nd side of a double-sided copy using thick paper.	Zone C: 18.41 g or more
SP-UT1	Use it to adjust the separation charging bias for single-sided copying and when copying on the 1 st side of a double-sided copying using extra thick paper.	
SP-UT2	Use it to adjust the separation charging bias when copying on the 2nd side of a double-sided copy using extra thick paper.	
SP-S1-1	Use it to adjust the separation charging bias for single-sided copying and copying on the 1st side of a double-sided copy using special paper 1 .	
SP-S2-1	Use it to adjust the separation charging bias for single-sided copying and copying on the 1st side of a double-sided copy using special paper 2 .	
SP-OHP	Use it to adjust the separation charging bias when using transparencies.	
SP-POST	Use it to adjust the separation charging bias when using postcards.	

Note 1: Execute this mode upon replacement of a CPU PCB or initialization of the RAM. The settings will be returned to standard settings, requiring you to enter the appropriate settings. Be sure to record any new settings on the service label.

Level 3	Description	Remarks
SP-ON-N1	Use it to adjust the separation re-charging ON environment adjustment value for single-sided copying and copying on the 1st side of a doublesided copy.	1 to 32 In this mode, the blue offset is decreased; check the setting of COPIER >ANALOG-ABS-
SP-ON-N2	Use it to adjust the separation re-charging ON environment adjustment value for copying on the 2nd side of a double-sided copy using plain paper.	HUM, and enter the appropriate value (1 through 32) from below.
SP-ON-L1	Use it to adjust the separation re-charging on environment adjustment value for single-sided copying or copying on the 1st side of a double-sided copy using thin paper.	$\begin{aligned} & 1: \\ & \text { 1: all environment OFF } \\ & \text { 2: } \\ & 3.03 \mathrm{~g} \text { g or less } \\ & 4.42 \mathrm{~g} \text { or less } \\ & 4.81 \mathrm{~g} \text { or less } \\ & 5: \\ & \hline .21 \mathrm{~g} \text { or less } \end{aligned}$
SP-CN-L2	Use it to adjust the separation re-charging on environment adjustment value for copying on the 2nd side of a double-sided copy using thin paper.	$\begin{array}{ll} \text { 6: } & 4.60 \mathrm{~g} \text { or less } \\ \text { 7: } & 4.99 \mathrm{~g} \text { or less } \\ 8: & 5.38 \mathrm{~g} \text { or less } \end{array}$
SP-ON-T1	Use it to adjust the separation re-charging on environment adjustment value for single-sided copying and copying on the 1st side of a doublesided copy using thick paper.	9: 5.77 g or less 10: 6.17 g or less 11: 6.65 g or less 12: 7.13 g or less
SP-ON-T2	Use it to adjust the separation re-charging on environment adjustment value for copying on the 2nd side of a double-sided copy using thick paper.	13: 7.61 g or less 14: 8.09 g or less 15: 8.57 g or less 16: 9.05 g or less
SP-ONUT1	Use it to adjust the separation re-charging on environment adjustment value for single-sided copying and copying on the 1st side of a doublesided copy using extra thick paper.	17: 9.53 g or less 18: 10.01 g or less 19: 10.50 g or less 20: 11.44 g or less
SP-ONUT2	Use it to adjust the separation re-charging on environment adjustment value for copying on the 2nd side of a double-sided copy using extra thick paper.	21: 12.38 g or less 22: 13.32 g or less 23: 14.26 g or less 24: 15.20 g or less
SP-ON-S1	Use it to adjust the separation re-charging on environment adjustment value for single-sided copying and copying on the 1st side of a doublesided copy using special paper 1 .	25: 16.00 g or less 26: 16.80 g or less 27: 17.60 g or less 28: 18.40 g or less 29: 19.20 g or less
SP-ON-S2	Use it to adjust the separation re-charging on environment adjustment value for single-sided copying and copying on the 1st side of a doublesided copy using special paper 2.	30: 20.00 g or less 31: 20.80 g or less 32: 21.60 g or less For instance, in the case of 5
SP-ONOHP	Use it to adjust the separation re-charging on environment adjustment value using transparencies.	g , enter ' 8 ' for the paper type in question so that the
SP-ON-PT	Use it to adjust the separation re-charging on environment adjustment value using postcards.	separation re-charging mechanism will turn on when the moisture content is 0 to 5.38 g .

Note 1: Execute this mode upon replacement of a CPU PCB or initialization of the RAM. The settings will be returned to standard settings, requiring you to enter the appropriate settings. Be sure to record any new settings on the service label.

Adjusts the internal static eliminating high-voltage output by condition.

Level 3	Description	Remarks
HV-IEL	Use it to adjust the internal static eliminating highvoltage output.	$\begin{aligned} & -8 \text { to } 0 \\ & \text { Unit: } 0.5 \mathrm{kV} \end{aligned}$
IEL-L1	Use it to adjust the internal static eliminating bias for single-sided copying and when copying on the 1 st side of a double-sided copy using thin paper.	$\text { -8 to } 0$ Unit: 0.5 kV The copier may be adapted to
IEL-L2	Use it to adjust the internal static eliminating bias when copying on the 2nd side of a double-sided copy using thin paper.	the site of installation (temperature, humidity) by changing its various settings.
IEL-N1	Use it to adjust the internal static eliminating bias for single-sided copying and copying on the 1st side of a double-sided copy using plain paper.	For this mode, you will find settings grouped into three zones (A, B, C). On the Level
IEL-N2	Use it to adjust the internal static eliminating bias for copying on the 2 nd side of a double-sided copy using plain paper.	sure to adjust Level 3 items of the appropriate zones (TEMP, ABS-HUM).
IEL-T1	Use it to adjust the internal static eliminating bias for one-sided copying and when copying on the 1st side of a double-sided copy using thick paper.	Division by Moisture Content Zone A: 0 to 6.17 g Zone B: 6.18 to 18.40 g
IEL-T2	Use it to adjust the internal static eliminating bias when copying on the 2 nd side of a double-sided copy using thick paper.	Zone C: 18.41 g or more
IEL-UT1	Use it to adjust the internal static eliminating bias for single-sided copying and when copying on the 1st side of a double-sided copy using extra thick paper.	
IEL-UT2	Use it to adjust the internal static eliminating bias when copying on the 2nd side of a double-sided copy using extra thick paper.	
IEL-S1-1	Use it to adjust the internal static eliminating bias for single-sided copying and copying on the 1st side of a double-sided copy using special paper 1 .	
IEL-S2-1	Use it to adjust the internal static eliminating bias for single-sided copying and copying on the 1st side of a double-sided copy using special paper 2.	
IEL-OHP	Use it to adjust the internal static eliminating bias when using transparencies.	
IEL-POST	Use it to adjust the internal static eliminating bias when using postcards.	

Note 1: Execute this mode upon replacement of a CPU PCB or initialization of the RAM. The settings will be returned to standard settings, requiring you to enter the appropriate settings. Be sure to record any new settings on the service label.

Adjusts the attraction charging high-voltage output by condition.

Level 3	Description	Remarks
HV-ATT	Use it to adjust the attraction high-voltage output.	$\begin{aligned} & -5 \text { to }+5 \\ & \text { Unit: } 2 \mu \mathrm{~A} \\ & \hline \end{aligned}$
ATT-L1	Use it to adjust the attraction charging bias for single-sided copying and when copying on the 1st side of a double-sided copy using thin paper.	$-5 \text { to }+5$ Unit: $2 \mu \mathrm{~A}$ The copier may be adapted to
ATT-L2	Use it to adjust the attraction charging bias when copying on the 2nd side of a double-sided copy using thin paper.	the site of installation (temperature, humidity) by changing its various settings.
ATT-N1	Use it to adjust the attraction charging bias for single-sided copying and copying on the 1st side of a double-sided copy using plain paper.	For this mode, you will find settings grouped into three zones (A, B, C). On the Level
ATT-N2	Use it to adjust the attraction charging bias for copying on the 2nd side of a double-sided copy using plain paper.	sure to adjust Level 3 items of the appropriate zones (TEMP, ABS-HUM).
ATT-T1	Use it to adjust the attraction charging bias for onesided copying and when copying on the 1st side of a double-sided copy using thick paper.	Division by Moisture Content Zone A: 0 to 6.17 g Zone B: 6.18 to 18.40 g
ATT-T2	Use it to adjust the attraction charging bias when copying on the 2nd side of a double-sided copy using thick paper.	Zone C: 18.41 g or more
ATT-UT1	Use it to adjust the attraction charging bias for single-sided copying and when copying on the 1st side of a double-sided copy using extra thick paper.	
ATT-UT2	Use it to adjust the attraction charging bias when copying on the 2nd side of a double-sided copy using extra thick paper.	
ATT-S1	Use it to adjust the attraction charging bias for single-sided copying and copying on the 1st side of a double-sided copy using special paper 1 .	
ATT-S2	Use it to adjust the attraction charging bias for single-sided copying and copying on the 1st side of a double-sided copy using special paper 2 .	
ATT-OHP	Use it to adjust the attraction charging bias when using transparencies.	
ATT-POST	Use it to adjust the attraction charging bias when using postcards.	

Note 1: Execute this mode upon replacement of a CPU PCB or initialization of the RAM. The settings will be returned to standard settings, requiring you to enter the appropriate settings. Be sure to record any new settings on the service label.

Adjusts the original detection area/slice level.

Level 3	Description	Remarks
DA-XS DA-XE DA-YS DA-YE (Note 1)	Fine-Adjusting the Original Detection Area If an original is placed on the copyboard glass at an angle, its copy will be framed in black by the work of original detection mode. Use this item to make settings so as to remove such frames. Keep in mind that a change in the settings will affect the frame width in original detection mode while the projector is in use.	$-99 \text { to }+99$ (0 to 6.3 mm) Standard: SX=24 XE=8 YS=32 YE=24 Unit: 0.06 mm (approx.)
DS-DOC (Note 1)	Adjusting the Slice Level for Original Detection You may set a slice level of your choice for original detection. A higher slice level will increase the degree of detection of an original, but at the same time will lead to wrong detection.	0 to 31 (density level of 0 to 248) Standard: 21

Note 1: Execute this mode upon replacement of a CPU PCB or initialization of the RAM. The settings will be returned to standard settings, requiring you to enter the appropriate settings. Be sure to record any new settings on the service label.

Level 3	Description	Remarks
ATT-T-A	Use it to enter a transfer drum side A attraction timing adjustment value. Ase it to enter a transfer drum side B attraction timing adjustment value.	-10 to +10 Unit: 0.4 mm
RG-XA	Use it to enter a registration (point of attraction) fine-adjustment value for transfer drum side A sub scanning direction (feeding direction). Use it to enter a registration (point of attraction) fine-adjustment value for transfer drum side B sub scanning direction (feeding direction).	-47 to +47 Unit: 0.06 mm
RG-Y	Use it to enter a registration (point of attraction) fine-adjustment value for transfer drum main scanning direction (drum axial).	-70 to +70

CST-ADJ

Adjusts cassette-/manual feed-related items.

Level 3	Description	Remarks
C2-STMTR	Use it to adjust the paper width basic value for STMTR in cassette 2.	0 to 1023 When you have replaced the CPU PCB or initialized the RAM of the DC-CPU, enter the values recorded on the service label. If you have replaced the paper width sensor, execute COPIER>FUNCTION>CST.
C2-A4R	Use it to adjust the paper width basic value for A4R in cassette 2.	
C3-STMTR	Use it to adjust the paper width basic value for STMTR in cassette 3 (for CLC1150, cassette 2).	
C3-A4R	Use it to adjust the paper width basic value for A4R in cassette 3 (for CLC1150, cassette 2).	
MF-A4R	Use it to adjust the paper width basic value for A4R in the multifeeder.	
MF-A6R	Use it to adjust the paper width basic value for A6R in the multifeeder.	
MF-A4	Use it to adjust the paper width basic value for A4 in the multifeeder.	
C1-LVOL	Use it to enter a slice level for the cassette 1 paper level detecting VR (for 50 sheets).	0 to 1023 When you have replaced the CPU PCB or initialized the RAM of the DC -CPU, enter the values recorded on the service label.
C1-HVOL	Use it to enter a slice level for the cassette 1 paper level detecting VR (for 275 sheets).	
C2-LVOL	Use it to enter a slice level for the cassette 2 (for CLC1150, cassette 1) paper level detecting VR (for 50 sheets).	
C2-HVOL	Use it to enter a slice level for the cassette 2 (for CLC1150, cassette 1), paper level detecting VR (for 275 sheets).	
C3-LVOL	Use it to enter a slice level for the cassette 3 (for CLC1150, cassette 2) paper level detecting VR (for 50 sheets).	
C3-HVOL	Use it to enter a slice level for the cassette 3 (for CLC1150, cassette 2) paper level detecting VR (for 275 sheets).	

Level 3	Description	Remarks
SEG-ADJ	Use it to adjust the separation level between text and photo in text/photo mode or text/silver halide mode.	-3 to +3
K-ADJ	Use it to correct the black text mechanism.	-3 to +3
ATT-RTN1	Use it to add a single rotation to attraction rotation for single-sided copying and copying on the st side of double-sided copying using plain paper (full color/ black). ATT-RTN2 Use it to add a single rotation to attraction rotation for copying on the 2nd side of a double-sided copy using plain paper (full color/black).	0 to 1
ATT-RTN3	Use it to add a single attraction rotation for single- sided copying and copying on the st side of a double- sided copy using thin paper (full color/black). Use it to add a single rotation to attraction rotation for copying on the 2nd side of a double-sided copy using thin paper (full color/black).	Use it to adjust the color recognition range when pattern processing is not performed.
BC-ADJ	-3 to +3 A higher setting will decrease the recognition range (i.e., a light color or a dark color will be identified as white or black, respectively).	
ACS-ADJ	Use it to adjust the color recognition sensitivity for ACS.	-6 to +6

SENS-ADJ

Adjusts sensor-related items.

Level 3	Description	Remarks		
CLN-TH	$\begin{array}{l}\text { Use it to enter a thermal correction value for the pre- } \\ \text { cleaning paper sensor (PS71). }\end{array}$	$\begin{array}{l}2300 \text { to } 5500 \\ \text { CLN-TMP }\end{array}$		
$\begin{array}{ll}\text { Use it to enter a thermal correction value for the pre- } \\ \text { cleaning paper sensor (PS71). }\end{array}$				
0 to 60				
Unit: ${ }^{\circ} \mathrm{C}$			$]$	When you have replaced the
:---				
CPU PCB or initialized the				
RAM of the DC-CUU be sure				
to enter the values recorded				
on the service label.				
If you have replaced the pre-				
cleaning paper sensor or the				
photosensitive drum, or				
removed the sensor unit, be				
sure to execute				
COPIER>FUNCTION>SENS-				
ADJ>CLN-OFST after				
cleaning the sensor unit.				

HV-SP-AC

Adjusts the separation charging AC high-voltage output by condition.

Level 3	Description	Remarks
HV-SP (Note 1)	Use it to adjust the separation AC high-voltage output.	$\begin{aligned} & -4 \text { to }+4 \\ & \text { Unit: } 0.5 \mathrm{kV} \end{aligned}$
SP-N1	Use it to adjust the separation charging bias for single-sided copying and copying on the 1st side of a double-sided copy using plain paper.	-4 to +4 Unit: 0.5 kV The copier may be adapted to the site of installation (temperature, humidity) by changing its various settings. For this mode, you will find settings grouped into three zones (A, B, C). On the Level 3 item screen (page 1), be sure to adjust Level 3 items of the appropriate zones (TEMP, ABS-HUM). Division by Moisture Content Zone A: 0 to 6.17 g Zone B: 6.18 to 18.40 g Zone C: 18.41 g or more
SP-N2	Use it to adjust the separation charging bias for copying on the 2nd side of a double-sided copy using plain paper.	
SP-T1	Use it to adjust the separation charging bias for onesided copying and when copying on the 1st side of a double-sided copy using thick paper.	
SP-T2	Use it to adjust the separation charging bias when copying on the 2nd side of a double-sided copy using thick paper.	
SP-UT1	Use it to adjust the separation charging bias for single-sided copying and when copying on the 1 st side of a double-sided copying using extra thick paper.	
SP-UT2	Use it to adjust the separation charging bias when copying on the 2nd side of a double-sided copy using extra thick paper.	
SP-S1-1	Use it to adjust the separation charging bias for single-sided copying and copying on the 1st side of a double-sided copy using special paper 1 .	
SP-S2-1	Use it to adjust the separation charging bias for single-sided copying and copying on the 1st side of a double-sided copy using special paper 2 .	
SP-OHP	Use it to adjust the separation charging bias when using transparencies.	
SP-POST	Use it to adjust the separation charging bias when using postcards.	
SP-L1	Use it to adjust the separation charging bias for single-sided copying and when copying on the 1st side of a double-sided copy using thin paper.	
SP-L2 (Note 1)	Use it to adjust the separation charging bias when copying on the 2nd side of a double-sided copy using thin paper.	

Note 1: Execute this mode upon replacement of a CPU PCB or initialization of the RAM. The settings will be returned to standard settings, requiring you to enter the appropriate settings. Be sure to record any new settings on the service label.

Adjusts the post-cleaning high-voltage output.

Level 1	Description	Remarks
HV-PSTCL (Note 1)	Adjusting the Post-Cleaning High Voltage - Increase the setting if a width of about 5 cm along the leading edge of paper is dark when making halftone copies.	-6 to +6 Unit: $20 \mu \mathrm{~A}$

Note 1: Execute this mode upon replacement of a CPU PCB or initialization of the RAM. The settings will be returned to standard settings, requiring you to enter the appropriate settings. Be sure to record any new settings on the service label.

Feeder-Related Items
FEEDER>ADJUST

Level 3	Description	Remarks
ADJ-RX	Use it to adjust the registration in sub scanning direction with the feeder in use.	-50 to +50 Unit: 0.1 mm ADJ-RYUse it to adjust the registration in main scanning direction with the feeder in use.
ADJ-DY	Use it to adjust the registration in sub scanning direction with the feeder in use in manual mode.	Use it to adjust the registration in main scanning direction with the feeder in use in manual feed mode.

Projector-Related Items

Level 3	Description	Remarks
DS-PRJ	Use it to adjust the slice level for projection area detection with the projector in use.	0 to 31 Standard: 28
DS-OHP	Use it to adjust the slice level for original detection in reference to the reference sheet of film (e.g., 6×6, 8x10) placed on the copyboard glass with the projector in use.	0 to 31 Standard: 22 RD-XS
Use it to adjust the read area when the original detection mechanism is off or when original RD-XE RD-Yection fails even when the original detection RD-YE	-300 to +300 mechanism is on with the projector in use.	Standard: 0

Figure 4-12

PRJ>ADJUST

Level 3	Description	Remarks
NEGA-B NEGA-G NEGA-R POSI-B POSI-G POSI-R	Use it to adjust the target value for shading correction when copying negative film with the projector in use. Use it to adjust the target value for shading correction when copying positive film with the projector in use.	$-100 \text { to }+100$ A higher value darkens the color. $\mathrm{B} \rightarrow \mathrm{Y}$ $\mathrm{G} \rightarrow \mathrm{M}$ $\mathrm{R} \rightarrow \mathrm{C}$
N-LMT	Use it to change the limit for the projector lamp in negative normal mode with the projector in use	0 to 255 (effective range: 32 to 63)
N-G-LMT	Use it to change the limit for the projector lamp in negative copyboard mode with the projector in use.	0 to 255 (effective range: 32 to 48)
P-LMT	Use it to change the limit for the projector in positive normal mode with the projector in use.	0 to 255 (effective range: 32 to 41)
P-G-LMT	Use it to change the limit for the projector in positive copyboard mode with the projector in use.	0 to 255 (effective range: 32 to 41)
OHP-LMT	Use it to change the limit for the projector in transparency mode with the projector in use.	0 to 255 (effective range: 32 to 41)
P-DA-XS P-DA-XE P-DA-YS P-DA-YE	Use it to adjust the degree of the positive film original frame erasing mechanism with the projector in use.	$-99 \text { to }+99$ Unit: 0.6 mm (approx.) Standard: XS=24 XE=8 $\mathrm{YS}=32$ $\mathrm{YE}=24$
$\begin{aligned} & \text { N-DA-XS } \\ & \text { N-DA-XE } \\ & \text { N-DA-YS } \\ & \text { N-DA-YE } \end{aligned}$	Use it to adjust the degree of negative film original frame erasing mechanism with the projector in use.	```-99 to +99 Unit: 0.6 mm (approx.) Standard: 50```
$\begin{aligned} & \text { O-DA-XS } \\ & \text { O-DA-XE } \\ & \text { O-DA-YS } \\ & \text { ODAS-YE } \end{aligned}$	Use it to adjust the degree of transparency film original erasing mechanism with the projector in use.	$\begin{aligned} & \text {-99 to }+99 \\ & \text { Unit: } 0.6 \mathrm{~mm} \text { (approx.) } \\ & \text { Standard: } \\ & \text { XS }=24 \\ & \mathrm{XE}=8 \\ & \mathrm{YS}=32 \\ & \mathrm{YE}=24 \end{aligned}$
CHNGR-X CHNGR-Y	Use it to adjust the position in main scanning direction with the projector rotary changer in use. Use it to adjust the position in sub scanning direction with the projector rotary changer in use.	$\begin{aligned} & \hline-99 \text { to }+99 \\ & \text { Unit: } 0.6 \mathrm{~mm} \text { (approx.) } \\ & \text { Standard: } 0 \end{aligned}$

Editor-Related Items

Level 3	Description	Remarks
ED-X	Use it to adjust the input coordinates in editor sub scanning (X) direction. ED-Y (Note 1) scanning (Y) direction.	-99 to +99 Unit: 0.13 mm (approx.) Standard: 0

Note 1: Execute this mode upon replacement of a CPU PCB or initialization of the RAM. The settings will be returned to standard settings, requiring you to enter the appropriate settings. Be sure to record any new settings on the service label.

E. FUNCTION (operation check mode)

COPIER>FUNCTION Items

Cont'd

stirs the toner inside the M hopper at time of installation (OK key to start; auto stop)
stirs the toner inside the C hopper at time of installation (OK key to start; auto stop) stirs the toner inside the Bk hopper at time of installation (OK key to start; auto stop) stirs the toner inside the four color hoppers at time of installation (OK key to start; auto stop) reads black toner concentration sensor output data once again (OK key to start; auto stop) for R\&D
executes shading correction using the standard white plate (OK key to start; auto stop, indicating END for normal and ERR for error)
for future expansion
for future expansion
for future expansion
turns on the laser output for laser power adjustment (OK key to start; Stop key to stop)
turns on the laser for checking T-V00 (OK key to start; Stop key to stop)
turns on the laser for checking T-VFF (OK key to start; Stop key to stop)
turns on the laser for checking P3-V00 (OK key to start; Stop key to stop)
turns on the laser for checking P3-VFF-1 (OK key to start; Stop key to stop)
turns on the laser for checking P3-VFF-2 (OK key to start; Stop key to stop)
turns on the laser for checking P3-VFF-3 (OK key to start; Stop key to stop)
turns on the laser for checking P3-VFF-4 (OK key to start; Stop key to stop)
selects a point of attraction on the transfer during ATT-ON (1: 2-sheet retention of sides B and A; 2 : side A retention; 3: side B retention) executes attraction of copy paper to the transfer drum according to ATT-CHK settings (OK key to start; auto stop)
selects a point of attraction on the transfer during RGST-ON (1: 2 -sheet retention of sides B and A; 2: side A retention; 3: side B retention) executes printing for checking the point of registration (side of attraction) using C according to RGST-CHK settings (OK key to start; auto stop) selects a point of attraction on the transfer drum during TR1-ON (1: 2-sheet retention of sides B and $\mathrm{A} ; 2$: side A retention; 3: side B retention) executes printing for checking a $1-\mathrm{mm}$ leading edge margin according to TR1-CHK settings ($1: 2$-sheet retention of sides B and A; 2: side A retention; 3: side B retention)
selects a point of attraction on the transfer drum during TR2-ON (1: 2 -sheet retention of sides B and A; 2: side A retention; 3: side B retention)

executes printing for checking an 8-mm leading edge margin according to TR2-CHK settings (OK key to start; auto stop)
for R\&D
for R\&D
for R\&D
for R\&D
executes measurement of potential on the photosensitive drum (OK key to start; auto stop) executes offset adjustment of the potential measurement circuit of the photosensitive drum (OK key to start; auto stop)
executes initialization of the photosensitive drum potential measurement data (OK key to start; auto stop)
stores paper width detection reference point 1 for STMTR paper in cassette 2 (OK key to start; auto stop)
stores paper width detection reference point 2 for A4R paper in cassette 2 (OK key to start; auto stop) stores paper width detection reference point 1 for STMTR paper in cassette 3 (OK key to start; auto stop)
stores paper width detection reference point 2 for A4R paper in cassette 3 (OK key to start; auto stop) stores paper width detection reference point 1 for A4R paper in multifeeder (OK key to start; auto stop)
stores paper width detection reference point 2 for A6R paper in multifeeder (OK key to start; auto stop) stores paper width detection reference point 3 for A4 paper in multifeeder (OK key to start; auto stop) rotates the polishing roller while rotating the transfer drum (OK key to start and rotate for about 5 min ; auto stop)
generates output for measuring the fixing nip with (OK key to start; cyan image output generated and delivered automatically)
turns on the fixing oil pump (OK key to start; Stop key to stop)
checks the LCD for missing dots (OK key to start; all dots turned on, and changed to blue; Stop key to stop) starts a check on the LEDs on the control panel (OK key to start; LEDs turned on in sequence) ends a check on the LEDs on the control panel starts a check on key inputs from the control panel (press on highlighted item to end)
checks the touch panel of the control panel (+ indicated on LCD pressed repeatedly to move through highlighted items)
selects each clutch (enter parts No., and press OK key to select)
starts the operation of the clutch selected by 'CL' (OK key to start; Stop key to stop) selects each key (enter part No., and press OK key to select)

	- FAN-ON - MTR - MTR-ON - SL - SL-ON - SHV - SHV-ON	starts the operation of the fan selected by 'FAN' (OK key to start; stop key to stop) selects each motor (enter the part No., and press the OK key to select) starts the operation of the motor selected in 'MTR' (OK key to start; auto stop in 20 sec) selects each solenoid (enter part No., and press OK key to select) starts the operation of the solenoid selected in 'SL' (OK key to start; Stop key to stop) selects each high-voltage output (enter high-voltage No., and press OK to select) starts operation of the high-voltage output selected in 'SHV' (OK key to start; auto stop)
CLEAR		clears an error code (E000, E005, E008, E020, E717; OK key to start; turn off and then on power switch) initializes the RAM of the DC-CPU (OK key to start) initializes the RAM of the R-CPU (OK key to start) initializes the RAM of the PANEL-CPU (OK key to start) initializes the backup data of service mode (OK key to start) clears the jam history (OK key to start) clears the error history (OK key to start)
MISC-R	T- SCANLAMP	turns on the scanning lamp (OK key to start; auto stop after several sec) starts scanner movement (OK key to start; 1: HP to A, 2: HP to B, 3: HP to C, 4: HP) for R\&D for R\&D for R\&D for R\&D
MISC-P	$\left[\begin{array}{l} \text { - DRUM-ROT } \\ - \text { POWEROFF } \\ \text { - B-HP } \\ \text { B-ATT-TR } \\ \text { B-TR } \\ \text { B-CLN } \end{array}\right.$	rotates the photosensitive drum to rotate idly for a specific period of time (OK key to start; auto stop) executes a check on the operation of auto power-off (OK key to start) rotates the attraction/transfer locking cam motor to move the cam to HP (OK key to start; auto stop) rotates the attraction/transfer locking cam motor to move the cam to the attraction/transfer position (OK key to start; auto stop) rotates the attraction/transfer locking cam motor to move the cam to the transfer position (OK key to start; auto stop) rotates the attraction/transfer locking cam motor to move the cam to the transfer drum cleaning position (OK key to start; auto stop)
SENS-AD	CLN-OFST	starts thermal correction operation of the pre-cleaning paper sensor (PS72; OK key to start; auto stop)

PRJ>FUNCTION Items

Description
drives the projector lamp for a specific period of time (OK key to start; auto stop)
reads in data and executes gain adjustment at time of projector installation (OK key to start; auto stop)

INSTALL

Used at time of installation.

Level 3	Description	Remarks
SPLY-Y SPLY-M SPLY-C SPLY-K	Use it to rotate the developing cylinder to supply a specific color developer to the developing assembly. Using the Item 1) Select an item (to highlight), and press the OK key. 2) To stop, press the Stop key.	
STIR-Y STIR-M STIR-C STIR-K	Use it to stir the developer inside a specific color developing assembly. Using the Item 1) Select an item (to highlight), and press the OK key. 2) The operation will stop automatically in about 2 min.	
STIR-4	Use it to stir the developer in the four developing assemblies in sequence. 1) Select the item (to highlight), and press the OK key. 2) The operation will stop automatically in about 9 min.	
INIT-Y INIT-M INIT-C INIT-K	Use it to read the initial value of a specific toner concentration signal SGNL, REF. - The screen (COPIER>ADJUST>DENS) will show the reading. Be sure to record it on the service label. Using the Item 1) Select the item (to highlight), and press the OK key. 2) The operation will stop automatically in about 2 min.	
INIT-4	Use it to read the initial value of the four color toner concentration signals SGNL, REF in sequence. - The screen (COPIER>ADJUST>DENS) will show the readings. Be sure to record them on the service label. Using the Item 1) Select the item (to highlight), and press the OK key. 2) The operation will stop automatically in about 9 min.	
RECV-Y RECV-M RECV-C RECV-K	Use it to rotate the developing cylinder, thereby drawing the developer from a specific color developing assembly. Using the Item 1) Select an item (to highlight), and press the OK key. 2) To stop, press the stop key. Note: You will use this mode during installation.	

Level 3	Description	Remarks
HP-STR-Y HP-STR-M HP-STR-C HP-STR-K	Use it to stir the toner inside a specific color hopper to prevent blocking at time of installation and hopper unit replacement. Using the Item 1) Select an item (to highlight), and press the OK key. 2) The operation will stop automatically in about 30 sec. Note:	
HP-STR-4	This item is designed to prevent blocking of toner supplied to an empty hopper at high speed, as occurring at time of installation or hopper unit replacement.	Use it to stir the toner inside the four color hoppers to prevent blocking at time of installation or hopper unit replacement.
Using the Item 1) Select the item (to highlight), and press the OK key.		
2) The operation will stop automatically in about 2		
min.		
HNIT-P	Caution:	
This item is designed to prevent blocking of toner supplied to empty hoppers at high speed, as occurring at time of installation or hopper unit replacement.		
INIT-D	Use it to read the concentration sensor output data once again after cleaning the black toner concentration sensor to suit the light reflected by the photosensitive drum. Using the Item 1) Select the item (to highlight), and press the OK key. 2) The operation will stop automatically.	
for R\&D		

Executes automatic adjustment of CCD-/shading-related items.

Level 3	Description	Remarks
CCD-ADJ	Use it to execute shading correction using the standard white plate. Using the Item 1) Select the item (to highlight), and press the OK key. 2) The operation will stop automatically, and the result will be indicated. 3urn off and then on the power switch.	END: normal ERR: error* *Try executing the item once again. Execute this item if you have replaced the CCD unit, scanning lamp, image processor, or the standard white plate.
	Caution: -Do not open the front cover while executing this mode. Otherwise, the CCD adjustment may fail.	
ADJEC-A ADJEC-BC ADJEC-BN	For future expansion.	

LASER

Adjusts laser-related items.

Level 3	Description	Remarks
POWER	Use it to turn on the laser output for adjusting the laser power.	OK key to start; Stop key to stop
T-V00	Use it to turn on the laser output when checking TV00.	
T-VFF	Use it to turn on the laser output when checking TVFF.	
P2-V00	Use it to turn on the laser output when checking P3V00.	
P3-VFF-1	Use it to turn on the laser output when checking P3-VFF-1.	
P3-VFF-2	Use it to turn on the laser output when checking P3-VFF-2.	
P3-VFF-3	Use it to turn on the laser output when checking P3-VFF-3.	
P3-VFF-4	Use it to turn on the laser output when checking P3-VFF-4.	

ATTRACT
Executes attraction point auto adjustment.

Level 3	Description	Remarks				
ATT-CHK	Use it to select a point of attraction on the transfer drum during ATT-ON. 1: 2-sheet retention (sides B and A) 2: side A retention 3: side B retention					
ATT-ON	Use it to execute attraction of copy paper to the transfer drum according to ATT-CHK settings. This item uses the source of paper selected before starting service mode. Using the Item 1) Select an item (to highlight), and press the OK key. 2) The operation will stop automatically.					
RGST-CHK	Use it to select the point of attraction on the transfer drum during RGST-ON. 1: 2-sheet retention (sides B and A) 2: side A detecting 3: side B retention					
RGST-ON	Use it to execute printing for checking the point of registration (side of attraction) using C according to RGST-CHK settings. This mode uses the source of paper selected before starting service mode. Using the Item 1) Select the item (to highlight), and press the OK key.					
2) TTe operation will stop automatically.			\quad	TRI-CHK	Use it to select a point of attraction on the transfer drum during TR1-ON. 1: 2-sheet retention (sides B and A) 2: side A detecting 3: side B retention	
:---:	:---:	:---:				
TRI-ON	Use it to execute printing for checking a 1-mm leading edge margin according to TR1-CHK settings. This mode uses the source of paper selected before starting service mode. Using the Item 1) Select the item (to highlight), and press the OK key. 2) The operation will stop automatically.					

Level 3	Description	Remarks
TR2-CHK	Use it to select a point of attraction on the transfer drum during TR2-ON. 1: 2-sheet retention (sides B and A) 2: side A detecting 3: side B retention	
TR2-ON	Use it to execute printing for checking an 8-mm leading edge margin according to TR2-CHK settings. This mode uses the source of paper selected before starting service mode.	
Using the Item 1) Select an item (to highlight), and press the OK key. 2) The operation will stop automatically.		
TR3-CHK	for R\&D	
TR3-ON	for R\&D	
TR4-CHK	for R\&D	
TR4-ON	for R\&D	

DPC

Measures the potential of the photosensitive drum.

Level 3	Description	Remarks
DPC	Use it to execute measurement of the potential of the photosensitive drum. Using the Item 1) Select the item (to highlight), and press the OK key. 2) The operation will stop automatically.	
OFST	Use it to execute offset adjustment of the potential measurement circuit of the photosensitive drum. Using the Item 1) Select the item (to highlight), and press the OK key. 2) The operation will stop automatically.	
INIT	Use it to execute initialization of the measurement data on the potential of the photosensitive drum if DPC cannot be executed normally. Using the Item 1) Select the item (to highlight), and press the OK key. 2) The operation will stop automatically.	

Executes cassette/multifeeder size auto adjustment.

Level 3	Description	Remarks
$\begin{aligned} & \text { C2-STMTR } \\ & \text { C2-A4R } \\ & \text { C3-STMTR } \\ & \text { C3-A4R } \end{aligned}$	Use it to store the paper width detection reference point for cassette 2/3 (for CLC1150, cassette 3). Using ht Item 1) Adjust the side guide pal of the bottommost cassette to STMTR. 2) Select C2-STMTR or C3-STMTR (to highlight), and press the OK key. 3) Likewise, store a reference point for A4R size.	STMTR width: 139.5 mm A4R width: 210 mm For fine adjustment after storing a reference point, use paper width basic value adjustment in ADJUST>CSTADJ.
$\begin{aligned} & \text { MF-A4R } \\ & \text { MF-A6R } \\ & \text { MF-A4 } \end{aligned}$	Use it to store the paper width detecting reference point for the multifeeder. Using the Item 1) Place A4R paper in the multifeeder, and adjust the side guide to A4R. 2) Select MF-A4R (to highlight), and press the OK key. 3) Likewise, store the reference point for A6R and A4.	A4R width: 210 mm A6R width: 105 mm A4 width: 297 mm For fine adjustment after storing a reference point, use paper width basic value adjustment in ADJUST>CSTADJ.

CLEANING

Checks cleaning operation.

Level 3	Description	Remarks
KCLN	Use it to rotate the transfer drum while keeping the polishing roller in contact. Using the Item 1) Select the item (to highlight), and press the OK key. 2) The operation will stop automatically in about 5 min.	You cannot stop this mode before the ongoing job ends.

Executes automatic adjustment of fixing assembly-related items.

Level 3	Description	Remarks
NIP-CHK	Use it to generate an output for measuring the fixing nip width. This mode uses the source of paper selected before service mode is started. Using the Item 1) Make about 20 copies of the Test Sheet in A4. 2) Select the item (to highlight), and press the OK key. 3) A cyan image will automatically be prepared and discharged. 4) Measure the width of the area indicated in the figure. Note: b and care points 10 to 15 mm from the sides of paper.	
PUMP-ON	Use it to impregnate the felt with oil by running the fixing oil pump for about 10 min when replacing the oil applying felt. Using the Item 1) Select the item (to highlight), and press the $O K$ key. - The fixing motor will rotate, and the fixing oil pump will turn on. 2) Press the Stop key to stop.	

PANEL

Checks the activation of the indicators on the control panel.

Level 3	Description	Remarks
LCD-CHK	Use it to check the LCD for missing dots. Using the Item 1) Select the item (to highlight), and press the OK key. The entire LCD will alternately turn on white, and then blue. 2) To stop, press the Stop key.	
LED-CHK	Use it to start a check on the LEDs on the control panel. Using the Item 1) Select the item (to highlight), and press the OK key. The LEDs on the control panel will turn on in sequence.	
LED-OFF	Use it to end a check on the LEDs on the control panel. 1) Press the item (highlighted) to end the operation.	See Table 4-4. Kontrol panel. Usingeck on the key inputs from the Using the Item 1) Select the item (to highlight). 2) Press any key to check. If normal, the corresponding character will appear on the LCD. 3) To stop, press KEY-CHK (to highlight) once again.
TOUCHCHK	Use it to adjust the coordinates of the touch panel on the control panel. Using the Item 1) Select an item (to highlight), and press the OK key. 2) Press the nine +s appearing on the touch panel in sequence. 3) To stop, press TOUCH-CHK (to highlight) once again.	This is to match the coordinates representing a point on the touch panel and the LCD. Execute this mode if you have replaced the LCD.

Key	Indication	Key	Indication
Counter Check	BILL	Start	START
ACS	ACS	Clear	CLEAR
Full Color	F-COLOR	0 to 9	0 to 9
Black	BLACK	ID	ID
Original Recognition	SIZE	Interrupt	INTERRUPT
Center Shift	C-SHIFT	Additional Function	USER
Energy Saver	STAND BY	Guide	$?$
Stop	STOP	Reset	RESET

Table 4-4

PART-CHK

Checks the operation of various loads.

Level 3	Description	Remarks
CL	Use it to select the clutch to check. Using the Item 1) Select the item (to highlight). 2) Enter the code of the clutch using the keypad. 3) Press the OK key.	See Table 4-5. Codes 13 through 20 are not used.
CL-ON	Use it to check the operation of the clutch selected using CL. 1) Select the item (to highlight), and press the OK key. The clutch will tun on. 2) To stop, press the Stop key.	Use it to select the fan to check. Using the Item 1) Select the item (to highlight). 2) Enter the code of the fan using the keypad. 3) Press the OK key.
FAN	Use it to check the operation of the fan selected using FAN. Using the Item 1) Select the item to select (to highlight), and press the OK key. The fan will turn on.	See Table 4-6. Codes 12 through 20 are not used.
FAN-ON		
MTR	Use it to select the motor to check. Using the Item 1) Select the item (to highlight). 2) Enter the code of the motor. 3) Press the OK key.	See Table 4-7. Codes 8 through 20 are not used.

Level 3	Description	Remarks
MTR-ON	Use it to check the operation of the motor selected using MTR. Using the Item 1) Select the item (to highlight), and press the OK key. 2) The motor will turn on. 2n about 20 sec, the operation will stop automatically.	Use it to select the solenoid to check. Using the Item 1) Select the item (to highlight). 2) Enter the code of the solenoid using the keypad. 3) Press the OK key.
SL	Use it to check the operation of the solenoid selected using SL. Using the Item 1) Select the item (to highlight), and press the OK key. The solenoid will turn on. 2) To stop, press the Stop key.	See Table 4-8. used.
SL-ON through 20 are not		
SHV	Use it to select the high-voltage output to check. Using the Item 1) Select the item (to highlight). 2) Enter the code of the high-voltage output using the keypad. 3) Press the OK key.	See Table 4-9. Codes 6 through 20 are not used.
SHV-ON	Use it to check the operation of the high-voltage output selected using SHV. Using the Item 1) Select the item (to highlight), and press the OK key. The high-voltage output will turn on. 2) The operation will stop automatically after generating a specific high-voltage output.	

Codes and Clutches

Code	Name	Code	Name
0	duplexing feed clutch (CL14)	7	cassette 1 pickup clutch (CL11)
1	---	8	cassette 2 pickup clutch (CL12/DCL12)
2	registration clutch (CL9)	9	cassette 3 pickup clutch (CL13/DCL13)
3	multifeeder feed clutch (CL10)	10	not used
4	multifeeder pickup clutch (CL16)	11	postcard feed clutch (CL18)
5	deck pickup clutch (CL102)	12	buffer path clutch (CL1)
6	re-pickup clutch (CL15)	-	-

Table 4-5

Code	Name	Code	Name
0	electrical unit cooling fan (FM8)	6	not used
1	IP cooling fan (FM7)	7	primary charging assembly fan (FM3)
2	exhaust fan (FM2)	8	delivery cooling fan (FM11)
3	ozone suction fan (FM5)	9	original exposure cooling fan 1 (FM1)
4	toner suction fan (FM6)	10	not used
5	laser scanner motor cooling fan (FM4)	11	original exposure system cooling fan 2/3
		(FM14/15)	

Table 4-6

Codes and Motors

Code	Name	Code	
0	hopper motor (M10)	4	laser scanner motor (M3)
1	transfer drum cleaner brush motor (M8)	5	fixing motor (M5)
2	not used	6	drum motor (M2)
3	duplexing motor (M14)	7	main motor (M4)

Table 4-7

Codes and Solenoids

Code	Name	Code	Name
0	multifeeder pickup solenoid (SL14)	5	pickup roller 3 solenoid (SL9/DSL9)
1	deck pickup solenoid (SL101)	6	buffer path solenoid 1 (SL1)
2	duplexing paper feed roller solenoid	7	buffer path solenoid 2 (SL2)
	(SL13)	8	attraction roller solenoid (SL6)
3	pickup roller 1 solenoid (SL7)	9	separation claw solenoid (SL4)
4	pickup roller 2 solenoid (SL8/DLS8)		

Table 4-8

Code	High-voltage output	Description		
0	---	$\begin{array}{l}\text { Absence of high-voltage output }\end{array}$		
1	primary output, grid output	$\begin{array}{l}\text { drum motor ON } \\ \text { pre-exposure lamp ON } \\ \text { photosensitive drum 1 rotation } \\ \text { primary output, grid output (500 V) ON } \\ \text { (wait for stop command; equivalent of } \\ \text { photosensitive drum 10 rotations) } \\ \text { primary output, grid output OFF } \\ \text { photosensitive drum 1 rotation } \\ \text { pre-exposure lamp OFF } \\ \text { drum motor OFF }\end{array}$		
2	$\begin{array}{l}\text { primary output, grid output, M color } \\ \text { developing bias output }\end{array}$	$\begin{array}{l}\text { drum motor ON } \\ \text { pre-exposure lamp ON } \\ \text { photosensitive drum 1 rotation } \\ \text { primary output, grid output (500 V) ON }\end{array}$		
M color developing assembly locked,				
developing bias (AC/DC) ON				
(wait for stop command; equivalent of				
photosensitive drum 10 rotations)				
M developing assembly unlocked, developing				
bias (AC/DC) OFF				
primary output, grid output OFF				
photosensitive drum 1 rotation			$\}$	pre-exposure lamp OFF
:---				
drum motor OFF	$	$		

Table 4-9a

COPIER>FUNCTION

Code	High-voltage output	Description		
4	$\begin{array}{l}\text { primary output, grid output, Y developing } \\ \text { assembly bias output }\end{array}$	$\begin{array}{l}\text { drum motor ON } \\ \text { pr-exposure lamp ON } \\ \text { photosensitive drum 1 rotation } \\ \text { primary output, grid output (500 V) ON } \\ \text { Y developing assembly locked, developing } \\ \text { bias (AC/DC) ON } \\ \text { (wait for stop command; equivalent of } \\ \text { photosensitive drum 10 rotations) } \\ \text { Y developing assembly unlocked, developing } \\ \text { bias (AC/DC) OFF } \\ \text { primary output, grid output OFF } \\ \text { photosensitive drum 1 rotation }\end{array}$		
pre-exposure lamp OFF				
drum motor OFF			$]$	drum motor ON
:---				
pre-exposure lamp ON				
photosensitive drum 1 rotation				
primary output, grid output (500 V) ON				
Bk color developing assembly locked,				
developing bias (AC/DC) ON				
(wait for stop command; equivalent of				
photosensitive drum 10 rotations)				
Bk developing assembly unlocked,				
developing bias (AC/DC) OFF				
primary output, grid output OFF				
photosensitive drum 1 rotation				
pre-exposure lamp OFF				
drum motor OFF				

Table 4-9b

CLEAR
Initializes the RAM, and resets the jam/ error history.

Level 3	Description	Remarks
ERR	Use it to reset an error code (E000, E005, E008, E020, E717, E719). Using the Item 1) Select the item (to highlight), and press the OK key. 2) Turn off and then on the power switch.	Be sure to turn off and then on the power switch. Note: 'E020' is indicated only when the detail code is 'xxE0'.
DC-CON	Use it to initialize the RAM of the DC-CPU on the CPU PCB. Using the Item 1) Select the item (to highlight), and press the OK key. 2) Turn off and then on the power switch.	Be sure to turn off and then on the power switch.
R-CON	Use it to initialize the RAM of the R-CPU on the CPU PCB. 1) Select the item (to highlight), and press OK key. 2) Turn off and then on the power switch.	Be sure to turn off and then on the power switch.
MMI-COPY	Use it to initialize the RAM of the PANEL-CPU on the CPU PCB. Using the Item 1) Select the item (to highlight), and press the OK key.	Be sure to turn off and then on the power switch.
2ERVICE	Use it to reset the backup data of service mode. Using the Item 1) Select the item (to highlight), and press the OK key. 2) Turn off and then on the power switch.	Be sure to turn off and then on the power switch.
JAM-HIST	Use it to reset the jam history. Using the Item 1) Select the item (to highlight), and press the OK key. - The jam history will be reset.	Use it to reset the error history. Using the Item 1) Select the item (to highlight), and press the OK key. - The error history will be reset.
E354-CLR	------	
E355-CLR		

Checks the operation of the reader unit.

MISC-P

Checks the operation of the printer unit.

Level 3	Description	Remarks
DRUM-ROT	Use it to rotate the photosensitive drum idly for a specific period of time. Using the Item 1) Select the item (to highlight), and press the OK key. 2)The photosensitive drum rotates idly for 30 sec, and will stop automatically.	
POWEROFF	Use it to check the operation of the auto power-off mechanism. 1) Select the item (to highlight), and press the OK key.	
The power switch will turn off automatically.		

Level 3	Description	Remarks
B-HP	Use it to rotate the attraction/transfer locking cam motor, thereby moving the cam to the home position (HP). Using the Item 1) Select the item (to highlight), and press the OK key. 2) The attraction/transfer locking cam will stop at	
B-ATT-TR	Use it to rotate the attraction/transfer locking cam motor, thereby moving the cam to the point of attraction/transfer. Using the Item 1) Select the item (to highlight), and press the OK key.	
2)The cam will move to the point of attraction/ transfer, and will stop automatically.		
B-TR	Use it to rotate the attraction/transfer locking cam motor, thereby moving the cam to the point of transfer. Using the Item 1) Select the item (to highlight), and press the OK key. The cam will move to the point of transfer, and will stop automatically.	
B-CLN	Use it to rotate the attraction/transfer locking cam motor, thereby moving the cam to the transfer drum cleaning position. Using the Item 1) Select the item (to highlight), and press the OK key. 2)The cam will move to the transfer drum cleaning position, and will stop automatically.	

SENS-ADJ

Checks sensor-related operations.

Level 3	Description	Remarks
CLN-OFST	Use it to execute temperature correction for the pre- cleaning paper sensor (PS72). Using the Item 1) Select the item (to highlight), and press the OK key.	Execute this mode if you have removed (e.g., for cleaning) or replaced the pre-cleaning sensor (PS72) or have replaced the photosensitive drum.
	2)The operation will stop automatically. The screen (COPIER>ADJUST>SENS-ADJ) will show the readings. Be sure to record them on the service label.	

Projector-Related Items

PRJ>FUNCTION

Level 3	Description	Remarks
LAMP	$\begin{array}{l}\text { Use it to keep the lamp of the projector on for a } \\ \text { specific period of time. } \\ \text { Using the Item } \\ \text { 1) Select the item (to highlight), and press the OK } \\ \text { key. } \\ \text { The lamp of the projector will remain on for about } \\ \text { 1 min, and will turn off automatically. }\end{array}$	$\begin{array}{l}\text { Use it to read CCD gain adjustment and data at time } \\ \text { of installing a projector. } \\ \text { Using the Item } \\ \text { 1) Select the item (to highlight), and press the OK } \\ \text { key. } \\ \text { 2) }\end{array}$
CCD operation will stop automatically.		

mode while the copier

is warming up.\end{array}\right\}\)

F. OPTION (settings mode)

COPIER>OPTION Items

Level 1
OPTION

Level 2

USER

Cont'd
Cont'd
use it to turn on/off precious metal mode (0 : off, 1 : on, default=0)
use it to select the copy image maximum density when copying on transparencies (0 : $\operatorname{Dmax}=1.3,1$: Dmax=1.6, default=0)
use it to change the upper limit on the copy count (1 to 100)
use it to select a counter type (soft counter 1 on the control panel of a $120 / 230-\mathrm{V}$ model) to suit the user or dealer (0 : no counter; 1 through 95) use it to select a counter type (soft counter 2 on the control panel of a $120 / 230-\mathrm{V}$ model) to suit the user or dealer (0: no counter; 1 through 95) use it to select a counter type (soft counter 3 on the control panel of a $120 / 2300 \mathrm{~V}$ model) to suit the user or dealer (0 : no counter; 1 through 95) use it to select a counter type (soft counter 4 on the control panel of a $20 / 230-\mathrm{V}$ model) to suit the user or dealer (0 : no counter; 1 through 95) use it to select a counter type (soft counter 5 on the control panel) to suit the user or dealer (0: no counter; 1 through 95)

- COUNTER6 use it to select a counter type (soft counter 6 on the control panel) to suit the user or dealer (0: no counter; 1 to 95)
use it to enable copying, printing, and scanning without the control key, control card, or ID No. input. for R\&D
for R\&D
Description
use it to switch data display on the DISPLAY>CCD screen (0: normal mode, 1 : precious metal mode)
use it to switch destination (0: AB (6R, 5E), 1: Inch (5R, 4E), 2: A (3R, 3E), 3: AB/Inch (6R, 5E)
Use it to switch over the mode of reciprocating operation for the cleaning blade. (0: normal mode; 1: reciprocation ON at all times; 2: reciprocation OFF at all times)
use it to change the frequency of turning on the fixing cleaning belt (not used; default=0) use it to switch gradation correction data, contrast potential obtained by auto gradation correction (0 : disable, 1 : enable)
use it to smooth out the gradations on an image from an external image controller (0 : as before, 1 : smooth out gradation (data) for auto gradation correction, 2: enable)
use it to select the presence/absence of EC coating on the copyboard glass (0 : absent, 1: present, 2 :not used, 9: for future expansion)
use it to switch the post-cleaning charging mechanism (0: normal, 1: all environments) CONTROL

COLDOFST

	CLR-L-SP - PRJ-L-SP - BKL-L-SP	Use it to set placement of 2 sides in copier model (0 : normal; 1: prohibit in full color; 2: prohibit in black mono; 3: prohibit at all times) Use it to set placement of 2 sides when the projector is in use (0 : normal; 1: prohibit in full color; 2 : prohibit in black mono; 3: prohibit at all times) Use it to set placement of 2 sides in back-light mode. (0: normal; 1: prohibit in full color; 2: prohibit in black mono; 3: prohibit at all items)
- CST	$\begin{aligned} & \text { P-SZ-C1 } \\ & \text { P-SZ-C2 } \end{aligned}$	use it to select a paper size for cassette (Table 13708) use it to select a paper size for cassette 2 (for CLC1150, cassette 1; Table 13-708)
- ACC	DK-P COIN	use it to select a paper size for the paper deck (0 : A4, 1: B5, 2: LTR) use it to turn on/off the coin vender notation
L INT-FAC	REMOTE B-CLR P-PRT-MF	use it to make settings for connecting an external controller (0 to 7; default: 2) use it to specify the presence/absence of a copy data controller (0 : not connected, 1 : connected) Use it to set priority on manual settings data (paper size, paper type, duplexing) when manual feed is selected with an external image controller in use (0: priority on local, 1 : priority on controller; 2 : priority on controller; default=2)

PRJ>OPTION Items

| Level 1 | Level 2 | Level 3 |
| :--- | :--- | :--- | Description

EDITOR>OPTION Items

Level 1	Level 2	Level 3	Description
OPTION		ED-MODE	use it to switch editor operation mode (0: prohibit input, 1: 1-point input, 2: continuous input)

Level 3	Description	Remarks
CCD-DISP	Use it to switch data display within the DISPLAY>CCD screen.	0: normal mode 1: precious metal mode
MODEL-SZ	Use it to switch the destination.	0: AB $(6 \mathrm{R}, 5 \mathrm{E})$ 1: Inch $(5 \mathrm{R}, 4 \mathrm{E})$ 2: A $(3 \mathrm{R}, \mathrm{BE})$ 3: AB/Inch $(6 \mathrm{R}, 5 \mathrm{E})$
RCPR-MD	Use it to switch cover the mode of reciprocating operation for the drum cleaning blade.	0: normal 1: reciprocation ON at all times 2: reciprocation OFF at all times
F-WEB (not used)	Use it to change the frequency of turning on the fixing cleaning belt.	default: 0
PASCAL	Use it to switch the gradation correction data, contrast potential obtained by auto gradation correction	0: do not use 1: use
PSCL-MD	Use it to smooth out the gradation of an image from an external image controller.	0: as before 1: smooth out gradation (data) for auto gradation correction 2: smooth
EC-GLASS	Use it to specify the presence/absence of EC coating on the copyboard glass. e After specifying, be sure to turn off and then on the power switch.	0: coating provided 1: coating not provided 2: not used 9: for future expansion
PSTCL-ON	Use it to switch the post-cleaning charging mechanism. - Take advantage of the item if memory or cyan/ black dots appear on the edges of paper in a low humidity environment.	0: normal 1: ON in all environments

USER

COPIER>OPTION
Selects user-related settings.

Level 3	Description				Remarks
METAL	Use it to turn on and off precious mode.				$\begin{array}{\|l\|} \hline \text { 0: off } \\ \text { 1: on } \\ \text { default: } 0 \end{array}$
OHP-MODE	Use it to select the copy image maximum density or copying on transparencies.				$\begin{array}{\|l} \hline \text { 0: } \operatorname{Dmax}=1.3 \\ \text { 1: } \text { Dmax }=1.6 \\ \text { Default: } 0 \\ \hline \end{array}$
COPY-LIM	Use it to change the upper limit on the copy count.				1 through 100
COUNTER1 COUNTER2 COUNTER3 COUNTER4	Use it to select a counter type to suit the user or dealer (soft counter 1 through 4 on the control panel of a $120 / 230-\mathrm{V}$ model).				$\begin{array}{\|l} \hline 0: \text { do not indicate } \\ 1 \text { to } 95 \\ \text { See Table 4-10. } \end{array}$
COUNTER5 COUNTER6	Use it to select a counter type to suit the use or dealer (soft counter $5 / 6$ on the control panel).				$\begin{aligned} & \hline 0: \text { do not indicate } \\ & 1 \text { to } 95 \\ & \text { See Table 4-10. } \end{aligned}$
CONTROL	In the absence of a control key, control card, or ID No. input, copying, remote printing, or remote scanning is permitted with conditions by changing the last three digits of CONTROL. - Disabling Control Key with Conditions				Settings of each digit: 0 to 4 Standard for each digit: 0 CONTROL xxx $\rightarrow 1$ st digit $\rightarrow 2$ nd digit \rightarrow 3rd digit
	1st digit of CONTROL	Black-andwhite copying	Remote printing	Remote scanning	
	0	NO	NO	NO	
	1	No	No	YES	
	2	NO	YES	YES	
		YES	YES	YES	
		YES	YES	YES	
	Note: See th - Disabling	Reference T Control Car	ble. with Cond		
	2nd digit of CONTROL	Black-andwhite copying	Remote printing	Remote scanning	
	0	NO	No	NO	
		no	NO	YES	
	2	No	YES	YES	
	3	Yes	YES	YES	
		Yes	YES	YES	
	Note: See the Reference Table.				

Level 3	Description	Remarks
CONTROL	2 For device* The device* total counter is incremented under all conditions; i.e., disabling control key, control card, or ID No. input with conditions. In the case of ' 3 ' or '4' for black-and-white copying without a card, the copy data controller card counter will not be incremented. In the case of ' 2 ', ' 3 ', or ' 4 ' for remote printing without a card, the copy data controller card counter will not be incremented. In the case of ' 2 ' or ' 4 ' for remote printing, the copy data controller card counter will be incremented regardless of the presence/absence of a copy data controller card. 3 With ID No. Registration in Use For '3' or '4' for black-and-white copying without an ID No. input, the counter for the group in question for the ID. No. will not be incremented. For '2', '3', or '4' for remote printing without an ID No. input, the counter for the group in question for the ID No. will not be incremented. For '2' or '4' for remote printing, the counter for the group in question for the ID No. will not be incremented regardless of the presence/absence of an ID No. or password input. Example - When CONTROL is set to '002', In the absence of a control key, remote printing and remote scanning are possible. In the absence of a control card, no job is possible. In the absence of an ID No. input, no job is possible. - When CONTROL is set to '421', In the absence of a control key, only remote scanning is possible. In the absence of a control card, remote printing and remote scanning are possible. In the absence of an ID No. input, black-and-white copying, remote printing, are remote scanning are possible.	* copy data controller or remote diagnostic device.
COLDOFST	for R\&D	
MONO-SPD	for R\&D	
CLR-L-SP	Use it to set placement of 2 sides in copier mode.	0: normal 1: prohibit in full color 2: prohibit in black mono 3: prohibit at all times (invalid in printer mode)
PRJ-L-SP	Use it to set placement of 2 sides when the projector is in use.	
BKL-L-SP	Use it to set placement of 2 sides in back-light mode with the projector in use.	

Selects cassette-related settings.

Level 3	Description	Remarks
P-SZ-C1	Use it to select a paper size for cassette 1.	See Table 4-11.
P-SZ-C2	Use it to select a paper size for cassette 2 (for CLC1150, cassette 1).	

ACC

Selects accessory-related settings.

Level 3	Description	Remarks
COIN	Use it to turn on/off the coin vendor notation.	
DK-P	Use it to select a paper size for the paper deck.	0: A4
		1: B5
2: LTR		

INT-FACE

Selects interface-related settings.

Level 3	Description	Remarks
REMOTE	Use it to make settings when an external controller is connected. 0 : local; priority on the settings selected on the copier. 1: remote 1 ; uses parameters selected on the controller, with the remaining settings from the copier 2: remote 2 ; uses parameters selected on the controller, with the remaining settings from the factory defaults of the copier Note: If you selected '0' for this item, be sure to set all color balance settings under 'print color' of user mode (adjust/cleaning) to ' +5 '.	default: 2 Controller Parameters - original type (photo, auto, text) - sharpness - color balance Copier Parameters - density - background level adjustment - hue, saturation, etc.
B-CLR	Use it to specify the presence/absence of a copy data controller.	0: not connected (detached) 1: connected
P-PRT-MF	Use it to select priority on settings data for manual pickup with an external image controller in use (local or controller). 0 : local; priority on the settings of the copier 1: remote 1 ; uses parameters selected on the controller, with the remaining settings from the copier 2: remote 2 ; uses parameters selected on the controller, with the remaining settings from the factory defaults of the copier	Controller Parameters - paper size - paper type - duplexing

Soft Counter Specifications

No.	Counter	Function	Color	Paper size	Count for doublesided sheet	Increment for largesize sheet
0	no indication	-	-	-	-	-
1	total 1	C+P	All	M	-	1
2	total 2	$\mathrm{C}+\mathrm{P}$	All	M	-	2
3	total (full color 1)	C+P	4C	M	-	1
4	total (full color 2)	C+P	4C	M	-	2
5	total (mono color)	C+P	Mono	M	-	1
6	total (black-and-white1)	C+P	Bk	M	-	1
7	total (black-and-white2)	$\mathrm{C}+\mathrm{P}$	Bk	M	-	2
8	total (large)	C+P	All	L	-	1
9	total (small)	C+P	All	S	-	-
10	copy 1	C	All	M	-	1
11	copy 2	C	All	M	-	2
12	copy (full color 1)	C	4C	M	-	1
13	copy (full color 2)	C	4C	M	-	2
14	copy (mono color 1)	C	Mono	M	-	1
15	copy (mono color 2)	C	Mono	M	-	2
16	copy (black-and-white 1)	C	Bk	M	-	1
17	copy (black-and-white 2)	C	Bk	M	-	2
18	copy (full color, large)	C	4C	L	-	1
19	copy (full color, small)	C	4C	S	-	-
20	copy (mono color, large)	C	Mono	L	-	1
21	copy (mono color, small)	C	Mono	S	-	-
22	copy (black-and-white, large)	C	Bk	L	-	1
23	copy (black-and-white, small)	C	Bk	S	-	-
24	copy (full color, large, doublesided)	C	4C	L	\bigcirc	1
25	copy (mono color, small, doublesided)	C	4C	S	\bigcirc	-
26	copy (mono color, large, doublesided)	C	Mono	L	\bigcirc	1
27	copy (mono color, small, doublesided)	C	Mono	S	\bigcirc	-
28	copy (black-and-white, large, double-sided)	C	Bk	L	\bigcirc	1
29	copy (black-and-white, small, double-sided)	C	Bk	S	\bigcirc	-

Table 4-10a

No.	Counter	Function	Color	Paper size	Count for double- sided sheet	Increment for large- size sheet
30	print 1	P	All	M	-	1
31	print 2	P	All	M	-	2
32	print (full color 1)	P	4 C	M	-	1
33	print (full color 2)	P	4 C	M	-	2
34	print (mono color 1)	P	Mono	M	-	1
35	print (mono color 2)	P	Mono	M	-	2
36	print (black-and-white 1)	P	Bk	M	-	1
37	print (black-and-white 2)	P	Bk	M	-	2

Table 4-10a

No.	Counter	Function	Color	Paper size	Count for doublesided sheet	Increment for largesize sheet
38	print (full color, large)	P	4C	L	-	1
39	point (full color, small)	P	4C	S	-	-
40	print (mono color, large)	P	Mono	L	-	1
41	print (mono color, small)	P	Mono	S	-	-
42	print (black-and-white, large)	P	Bk	L	-	1
43	print (black-and-white, small)	P	Bk	S	-	-
44	print (full color, large, doublesided)	P	4C	L	\bigcirc	1
45	print (full color, small, doublesided)	P	4C	S	\bigcirc	-
46	print (mono color, large, doublesided)	P	Mono	L	\bigcirc	1
47	print (mono color, small, doublesided)	P	Mono	S	\bigcirc	-
48	print (black-and-white, large, double-sided)	P	Bk	L	\bigcirc	1
49	print (black-and-white, small, double-sided)	P	Bk	S	\bigcirc	-
54	copy scan (full color, large)	S	4C	L	-	1
55	copy scan (full color, small)	S	4C	S	-	-
56	copy scan (black-and-white, large)	S	Bk	L	-	1
57	copy scan (black-and-white, small)	S	Bk	S	-	-
58	copy + print (full color, large)	$\mathrm{C}+\mathrm{P}$	4C	L	-	1
59	copy + print (full color, small)	$\mathrm{C}+\mathrm{P}$	4C	S	-	-
60	copy + print (black-and-white, large)	$\mathrm{C}+\mathrm{P}$	Bk	L	-	1
61	copy + print (black-and-white, small)	$\mathrm{C}+\mathrm{P}$	Bk	S	-	-
62	copy + print (black-and-white 2)	$\mathrm{C}+\mathrm{P}$	Bk	M	-	2
63	copy + print (black-and-white 1)	$\mathrm{C}+\mathrm{P}$	Bk	M	-	1
64	$\begin{aligned} & \text { copy + print (full color + mono } \\ & \text { color, large) } \end{aligned}$	$\mathrm{C}+\mathrm{P}$	4C+Mono	L	-	1
65	copy + print (full color + mono color, small)	$\mathrm{C}+\mathrm{P}$	4C+Mono	S	-	-
66	$\begin{aligned} & \text { copy + print (full color + mono } \\ & \text { color , 2) } \end{aligned}$	$\mathrm{C}+\mathrm{P}$	4C+Mono	M	-	2
67	copy + print (full color + mono color, 1)	$\mathrm{C}+\mathrm{P}$	4C+Mono	M	-	1
68	```copy (full color + mono color, large)```	C	4C+Mono	L	-	1
69	copy (full color + mono color, small)	C	4C+Mono	S	-	-

Table 4-10b

No.	Counter	Function	Color	Paper size	Count for doublesided sheet	Increment for largesize sheet
70	copy (full color + mono color, 2)	C	4C+Mono	M	-	2
71	copy (full color + mono color, 1)	C	4C+Mono	M	-	1
72	```print (full color + mono color, large)```	P	4C+Mono	L	-	1
73	print (full color + mono color, small)	P	4C+Mono	S	-	-
74	print (full color + mono color, 2)	P	4C+Mono	M	-	2
75	print (full color + mono color, 1)	P	4C+Mono	M	-	1
76	copy + print (large)	$\mathrm{C}+\mathrm{P}$	All	L	-	1
77	copy + print (small)	$\mathrm{C}+\mathrm{P}$	All	S	-	-
78	copy + print (2)	$\mathrm{C}+\mathrm{P}$	All	M	-	2
79	cop + ring (1)	$\mathrm{C}+\mathrm{P}$	All	M	-	1

Table 4-10b

No.	Counter	Function	Color	Paper size	Count for doublesided sheet	Increment for largesize sheet
80	copy (large)	C	All	L	-	1
81	copy (small)	C	All	S	-	-
82	print (large)	P	All	L	-	1
83	print (small-size)	P	All	S	-	-
84	total (mono-color, large)	C+P	Mono	L	-	1
85	total (mono-color, small)	C+P	Mono	S	-	-
86	total (black-and-white, large)	C+P	Bk	L	-	1
87	total (black-and-white, small)	C+P	Bk	S	-	-
88	copy scan (full-color)	S	4C	M	-	-
89	copy scan (black-and-white)	S	Bk	M	-	-
90	copy scan (large)	S	All	L	-	-
91	copy scan (small)	S	All	S	-	-
92	copy scan (total)	S	All	M	-	-
93	copy scan (large-size; 4)	S	All	L	-	-
94	copy scan (small-size; 4)	S	All	S	-	-
95	copy scan (total; 4)	S	All	M	-	-

Table 4-10c

Guide to the table

- Function

C: copy, P: print, S: scan

- Color

4C: 4-color full
MONO: yellow, magenta, cyan
Bk: black
ALL: 4C, MONO, and Bk

- Paper Size

L: large-size (larger than B4)
S: small-size (B4 and smaller)
M : both large and small

- Count at Duplexing

O: incremented by 1
-: same as normal copying

- Count Increment for Large-Size Paper

1: incremented by 1
2 : incremented by 2

Codes and Cassette Paper Sizes

Code	Notation	Paper	Code	Notation	Paper
01	A1	A1	21	LGL	Legal
02	A2	A2	22	K-LGL	Korean Government
03	A3R	A3R	23	K-LGLR	Korean Government R
04	A3	A3	24	FLSC	Foolscap
05	A4R	A4R	25	A-FLS	Australian
06	A4	A4	26	OFI	Foolscap
07	A5	A5	27	E-OFI	Oficio
08	A5R	A5R	28	B-OFI	Ecuadorian Officio
09	B1	B1	29	A-LTR	Bolivian Officio
10	B2	B2	30	A-LTRR	Argentine Letter
11	B3	B3	31	G-LTR	Argentine Letter-R
12	B4R	B4R	32	G-LTRR	Government Letter
13	B4	B4	33	A-LGL	Government Letter-R
14	B5R	B5R	34	G-LGL	Argentine Legal
15	B5	B5	35	FGLI	Government Legal
16	11x17	11x17	36	FOLI	Folio
17	LTRR	Letter-R	37	A-OFI	Argentine Officio
18	LTR	Letter	38		
19	STMT	Statement	39		
20	STMTR	Statement-R	40	ALL	

Table 4-11

Level 3	Description	Remarks
BK-LIGHT (not used)	Use it to enable or disable indication of a mode on the User screen when copying positive film with a protective sheet using back light BOX.	0: do not indicate $1:$ indicate default: 0

Editor-Related Items
EDITOR>OPTION

Level 3	Description	Remarks
ED-MODE	Use it to switch editor operation mode.	0: prohibit input
	1: 1-point input	
2: continuous input		

G. PG (test print)

COPIER>TEST Items

Generates test prints.

Level 3	Description	Remarks
TYPE	Use it to enter the type No. of a test print, and press the Copy Start key to start printing.	00: normal copying See Table 4-12. Be sure to set it back to ' 00 ' at the end of test printing.
TXPH	Use it to switch the number of lines used for test printing.	0: 200 lines 1: 400 lines 2: 800 lines
THRU DENS-Y DENS-M DENS-C DENS-K	Use it to switch LUT used for test printing.	0: LUT present 1: LUT absent 0 to 255
COLOR-Y COLOR-M COLOR-C COLOR-K	Use it to set the output (each color) for each TYPE. - For example, to generate on M mono test print, set COLOR-M to ' 1 ', and others to ' 0 '.	0 : do not generate 1: generate You can generate no more than one color.

Input Numbers and Test Prints

Input No.	Description	Input No.	Description
00	image from CCD (normal copying)	10	MCYK horizontal stripes (laser FF
01	for R\&D	11	activation) 02
256 colors R\&D			
03	256 gradations	12	MCYK 64 gradations
04	16 gradations (17 gradations)	13	BGR64 gradations
05	100% halftone	14	full color 16 gradations (17 gradations)
06	grid	15	full color light area 16 gradations (17 gradations)
07	for R\&D	16	MCYK horizontal stripes (laser A0 08
for R\&D		activation)	
09	for R\&D	-	-

Table 4-12

CHAPTER 4 SERVICE MODE

H. COUNTER (counter mode)

- You can check the number of times each mechanism has operated.

Resetting a Counter Reading

1) Select an item to highlight.
2) Press the Clear key on the control panel.

The counter will be reset to ' 00000000 '.

- Here, the notations "large-size" and "small-size" are used as follows:
large size covers B4 or larger sheets
small size covers sheets smaller than B4.

COPIER>COUNTER Items

Cont'd
scanner total scan counter scan counter during copying scan counter during printing
cassette 1 copy total counter
cassette 1 large size copy total counter cassette 1 small-size copy total counter cassette 2 copy total counter cassette 2 large-size copy total counter cassette 2 small-size copy total counter cassette 3 copy total counter cassette 3 large-size copy total counter cassette 3 small-size copy total count multifeeder copy total counter multifeeder large-size cop total counter multifeeder small-size copy total counter paper deck coy total counter 2nd side pickup total counter large-size 2 nd side pickup total counter 2nd side small-size pickup total counter
number of locking operations (Y developing assembly)
number of locking operations (M developing assembly)
number of locking operations (C developing assembly)
number of locking operations (Bk developing assembly)
feeder copy total count feeder large-size copy total counter feeder small-size copy total counter
copier copy jam total counter copier print jam total counter feeder print jam total counter sorter print jam total counter
length of power supply time counter for fixing cleaning belt (initially, '2,000'; the count is decreased by ' 1 ' each time the cleaning belt solenoid turns on after the warning for the belt has been issued)
primary charge wire auto cleaning counter (initially, 2000; -4 per full color copy, - 1 per mono color copy) polishing roller cleaning counter (initially, 1000; -1 per copy)
stapling counter for the stapler sorter

ozone filter fan (FM2) drive period (in sec) ozone filter fan (FM5) drive period (in sec) ozone filter fan (FM6) drive period (in sec) air filter fan (FM1) drive period (in sec) air filter fan (FM3) drive period (in sec) air filter fan (FM4) drive period (in sec) air filter fan (FM15) drive period (in sec) toner filter fan FM5) drive period (in sec) toner filter fan (FM6) drive period (in sec)
cleaning blade use period (in sec)
cleaner scoop-up sheet use period (in sec)
side seal front use period (in sec)
side seal rear use period (in sec)
No. 2 scoop-up sheet use period (in sec)
scanning lamp activation period (in sec)
grid plate high voltage activation period (in sec) primary charging wire cleaning pad (upper) execution (number of operations) primary charging wire cleaning pad (lower) execution (number of operations)
manual feed pickup roller paper passage (number of sheets)
manual feed feed roller paper passage (number of sheet)
manual feed separation roller paper passage (number of sheets)
attraction roller scraper paper passage (number of sheets)
waste toner case paper passage (number of sheets) drum cleaner end felt (front) paper passage (number of sheets)
drum cleaner end felt (rear) paper passage (number of sheets)
fixing cleaning belt (upper) take-up (number of operations)
fixing cleaning belt (lower) take-up (number of operations)
primary charging wire high voltage activation period (in sec)
transfer charging wire high voltage activation period (in sec)
separation charging wire high voltage activation period (in sec)
internal static eliminator charging wire high voltage activation period (in sec)
external static eliminator charging wire high voltage activation period (in sec)
post-cleaning charging wire high voltage activation period (in sec)
No. 2 cleaning blade use period (in sec)
attraction brush unit use period (in sec)
transfer blade unit use period (in sec)
transfer drum cleaner use period (in sec)
polishing roller use period (in sec)

- TR-SHEET
- SP-PU-RL
- FX-UP-RL

FX-LW-RL

- OIL-APF
- DP-PU-RL
- DP-FD-RL
- DP-SP-RL

D-PFRL-F
D-PFRL-R
OIL-APBL
FHTR-U
FHTR-L
PRE-LMP

- PRM-UNIT
- SP-UNIT

INT-UNIT
EXT-UNIT

- CLR-UNIT

C1-PU-RL

- C2-PU-RL

C3-PU-RL
C1-SP-RL

- C2-SP-RL

C3-SP-RL

- C1-FD-RL
- C2-FD-RL
- C3-FD-RL

DV-UNT-Y

- DV-UNT-M
- DV-UNT-C
- DV-UNT-K
- PD-PU-RL

PD-FD-RL
Cont'd
transfer drum sheet paper passage (number of sheets) separation push-up roll paper passage (number of sheets)
fixing upper roller paper passage (number of sheets)
fixing lower roller paper passage (number of sheets) oil applying felt use period (in sec)
duplexing pickup roller paper passage (number of sheets)
duplexing feed roller paper passage (number of sheets)
duplexing separation roller paper passage (number of sheets)
duplexing paper feed roller (front) paper passage (number of sheets)
duplexing paper feed roller (rear) paper passage (number of sheets)
oil applying blade use period (in sec)
fixing heater (upper) drive period (in sec)
fixing heater (lower) drive period (in sec)
pre-exposure lamp activation period (in sec)
primary charging assembly high voltage activation period (in sec)
separation charging assembly high voltage activation period (in sec)
internal static eliminator high voltage activation period (in sec)
external static eliminator high voltage activation period (in sec)
post-cleaning charging assembly high voltage period (in sec)
cassette 1 pickup roller paper passage (number of sheets)
cassette 2 pickup roller paper passage (number of sheets)
cassette 3 pickup roller paper passage (number of sheets)
cassette 1 separation roller paper passage (number of sheets)
cassette 2 separation roller paper passage (number of sheets)
cassette 3 separation roller paper passage (number of sheets)
cassette 1 feed roller paper passage (number of sheets)
cassette 2 feed roller paper passage (number of sheets)
cassette 3 feed roller paper passage (number of sheets)
Y developing assembly rotation period (in sec)
M developing assembly rotation period (in sec)
C developing assembly rotation period (in sec)
Bk developing assembly rotation period (in sec)
paper deck pickup roller paper passage (number of sheets)
paper deck feed roller paper passage (number of sheets)

PD-SP-RL paper deck separation roller paper passage (number of sheets)
FX-IN-BS fixing insulating bush paper passage (number of sheets)

CHAPTER 5 SELF DIAGNOSIS

A. Copier

The R-CPU and the DC-CPU of the copier's CPU PCB are equipped with a self diagnostic mechanism to check the state of the machine (particularly, the condition of sensors). The mechanism runs checks as needed, and indicates a code on the control panel when it finds a fault.

The tables that follow show codes and timing of detection, the latter with discussions of detail codes indicated in service mode (COPIER>DISPLAY>JAM/ERR).

Code	Cause	Timing of detection
E000	The discussions that follow are compiled according to detail code.	xx indicates a heater. $x x=01$: upper heater $\mathrm{xx}=02$: lower heater
	- The fixing thermistor is faulty. - The SSR is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	xx01 The high temperature detection circuit on the DC driver PCB has detected overheating ($220^{\circ} \mathrm{C}$ or more) in the middle of the heater.
		xx02 The thermistor (THM1/ THM3) has detected $210^{\circ} \mathrm{C}$.
		xx04 The high temperature detection circuit on the DC driver PCB has detected overheating on the ends of the heater ($220^{\circ} \mathrm{C}$ or more).
	- The fixing thermistor is faulty. - The fixing heater (H1, H2) has an open circuit. - The thermal switch (TP2, TP3) has an open circuit. - The SSR is faulty.	xx05 The open-circuit detection circuit of the DC driver PCB has determined that the difference in temperature (as detected by thermistors) between the middle and the end is $50^{\circ} \mathrm{C}$ or more.
		xx21 The temperature does not increase by $3^{\circ} \mathrm{C}$ or more in 4 \min at power-on (i.e., the temperature of the fixing assembly is $100^{\circ} \mathrm{C}$ or less).
		xx32 At power-on (i.e., the temperature of the fixing assembly is $100^{\circ} \mathrm{C}$ or more or $130^{\circ} \mathrm{C}$ or more), the temperature does not increase by $1^{\circ} \mathrm{C}$ or more in 2 min .
		xx40 A temperature of $50^{\circ} \mathrm{C}$ or less has been detected for 1 sec or more during standby.
		xx50 A temperature of $50^{\circ} \mathrm{C}$ or less has been detected for 1 sec or more during copying.

Code	Cause	Timing of detection
E004 (Note 3)	- The SSR1 has a short circuit. - The CPU PCB is faulty. - DC driver PCB is faulty.	xx indicates a heater. $x x=01$: upper heater $x x=02$: lower heater xx03 The gate array of the DC driver PCB has determined that SSR1 (for the fixing heater) is on for about 1.6 sec or more even after the DCCPU turned it off.
E005 (Note 2)	- The cleaning belt inside the fixing assembly has been taken up for a specific length. - The fixing cleaning belt length sensor (PS11/PS67) is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	0100 As many as 2,000 copies have been made after the fixing upper cleaning belt length sensor detected the sensor lever and indicated a warning on the control panel. 0200 As many as 2,000 copies have been made after the fixing lower cleaning belt length sensor detected the sensor lever and indicated a warning on the control panel.
E006	- The drawer connector of the fixing unit is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	0000 During copying operation, the connecton signal (CNCT*) for the fixing assembly drawer connector goes ' 1 '.
E008	- The fixing oil pump driver PCB is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	0000 The fixing oil pump driver PCB does not generate the drive signal even when the fixing oil pump drive signal has been turned on. 0001 The fixing oil pump driver PCB generate the drive signal even when the fixing oil pump drive signal has been turned off.
E010	- The main motor (M4) is faulty. - The main motor drive system is subjected to an overload. - The main motor driver PCB is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	The main motor ready signal (MNMRDY) is '0' for 1 sec or more while the main motor is rotating.
E012	- The drum motor (M2) is faulty. - The drum motor drive system is subjected to an overload. - The DC driver PCB is faulty. - The CPU PCB is faulty.	0001 Not used. 0002 The drum motor ready signal (DRMRDY) is '0' for 1 sec (4 sec during deceleration) while the drum motor is rotating.
E013	- The waste toner feedscrew lock detecting switch (SW7) is faulty. - The waste toner feedscrew is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	The waste toner feedscrew cannot rotate, and the waste toner feedscrew lock detecting switch has been pressed.

Code	Cause	Timing of detection
E014	- The fixing motor (M5) is faulty. - The fixing motor drive system is subjected to an overload. - The DC driver PCB is faulty. - The CPU PCB is faulty.	0000 The motor lock signal (FXMLK) is ' 0 ' for 1 sec or more while the fixing motor is rotating.
E016	- The cleaning blade reciprocating motor (M7) is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	The cleaning blade reciprocating motor driver circuit on the DC driver PCB has detected an overcurrent for 0.1 sec or more.
E017	- The duplexing motor (M14) is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	The duplexing motor clock signal (DUPMLK) is '0' for 1 sec or more while the duplexing motor is rotating.
E020	The discussions that follow are compiled according to detail code.	Toner Concentration Fault xx indicates the color of a developing assembly. $\mathrm{xx}=00$: MCYBk in common $\mathrm{xx}=01$: M $\mathrm{xx}=02$; C $\mathrm{xx}=03$: Y $\mathrm{xx}=04$: Bk The notations used herein means the following: SGNL: toner concentration signal REF: concentration signal DENS: developer concentration inside developing assembly SIGG: gain value for concentration reference signal PT-REF: concentration reference signal for photosensitive drum surface PT-STG-D: reflection light intensity signal for photosensitive drum surface
	- The toner concentration sensor is faulty. - The developer inside the developing assembly is not stirred properly. - The sensor is subjected to stray light (no cover, front cover open). - The photosensitive drum has deteriorated.	xx00 The connector is disconnected or there is an open circuit; the REF or SGNL level is '50' or less xx12 At time of setting initial data (as during installation), the variation of SGNL-M/C/Y levels for ten concentration data samplings is '70' or more.

Code	Cause	Timing of detection
E020	- The toner concentration sensor is faulty. - The developer inside the developing assembly is not stirred properly.	xx13 At time of setting initial data (as during installation), the variation of REF-M/C/Y levels for ten concentration data samplings is ' 70 ' or more.
	- The sensor is subjected to stray light (no cover, front cover open). - The photosensitive drum has deteriorated.	xx16 At time of setting initial data (as during installation), the variation of PT-SIG-M/C/Y levels for 16 concentration data samplings is '102' or more.
		xx17 At time of setting initial data (as during installation), the variation of PT-REF-M/C/Y levels for 16 concentration data samplings is '70' or more.
		xx20 At time of setting initial data (as during installation), the result of averaging samplings of SGNL-M/C/Y levels is '777' or less.
		xx21 At time of setting initial data (as during installation), the result of averaging samplings of REF-M/C/Y levels is '200' or less.
		xx23 At time of setting initial data (as during installation), the result of averaging samplings of PT-REF-M/C/Y levels is '777' or less.

Code	Cause		Timing of detection
E020	- The toner concentration sensor is faulty/ soiled. - The developer inside the developing assembly is not stirred properly. - The sensor is subjected to stray light (no cover, front cover open). - The photosensitive drum has deteriorated.	xx24	At time of setting initial data (as during installation), the result of averaging five retry samplings of PT-SIG-M/ C/Y levels is '683' or less or that of PT-SIG-K levels is '305' or less.
		xx30	At time of setting initial data (as during installation), the result of averaging samplings of SGNL-M/C/Y levels is '859' or more.
		xx31	At time of setting initial data (as during installation), the result of averaging samplings of REF-M/C/Y levels is '930' or more.
	- The toner concentration sensor is faulty. - The developer inside the developing assembly is not stirred properly. - The sensor is subjected to stray light (no cover, front cover open). - The photosensitive drum has deteriorated. - The window of the toner concentration	xx32	At time of setting initial data (as during installation), the result of averaging the first sampling of PT-SIG-M/ C / Y levels is ' 930 ' or more or that of PT-SIGK levels is '550' or more.
	sensor is soiled or scratched, or the protective sheet is soiled. - The photosensitive drum is soiled (e.g., cleaning fault).	xx33	At time of setting initial data (as during installation), the result of averaging samplings of PT-REF-M/C/Y levels is '859' or more.
		xx34	At time of setting initial data (as during installation), the result of averaging five retry samplings of PT-SIG-M/ C / Y levels is '749' or more or that of PT-SIGK levels is '371' or more.

Code	Cause	Timing of detection	
E020	- The toner concentration sensor is faulty. - The developer inside the developing assembly is not stirred properly. - The sensor is subjected to stray light (no cover, front cover open). - The photosensitive drum has deteriorated. - The window of the toner concentration sensor is soiled or scratched, or the protective sheet is soiled. - The photosensitive drum is soiled (e.g., cleaning fault).	xx40	At time of setting initial data (as during installation), gain setting cannot be performed (the level of SIGG-M/C/Y is 'E0' or more or '20H' or less).
		0441	At time of setting initial data (as during installation), gain setting cannot be performed (the level of RGAIN-K is 'E0' or more or ' 20 H ' or less).
		$\mathrm{xx} 42$	At time of setting initial data (as during installation, gain setting cannot be performed (the level of SIGG-P-M/C/Y/ K is ' 250 ' or more or ' 40 ' or less).
		xx43	At time of setting initial data (as during installation, gain setting cannot be performed (the level of RGAN-P-M/C/ Y / K is '250' or more or '40' or less).
	The backup data on the CPU PCB is faulty* or the initial settings have not been made. *Be sure to initialize the RAM of the DCCPU and enter the values recorded on the service label.	xx 50	During copying sequence, gain setting cannot be performed because of an error in the memory backup data (the level of SIGG-M/C/Y is 'E0' or more or '20H' or less).
		0451	During copying sequence, gain setting cannot be performed because of an error in the memory backup data (the level of RGAIN-K is 'E0' or more or '20H' or less).
		$\mathrm{xx} 52$	During copying sequence, gain setting cannot be performed because of an error in the memory backup data (the level of SIGG-P-M/C/Y/ K is '250' or more or ' 40 ' or less).

Code	Cause		Timing of detection
E020	The backup data on the CPU PCB is faulty* or the initial settings have not been made. *Be sure to initialize the RAM of the DC-CPU and enter the values recorded on the service label.	xx53	During copying sequence, gain setting cannot be performed because of an error in the memory backup data (the level of RGAN-P-M/C/Y/ K is ' 250 ' or more or ' 40 ' or less).
		xx6	During copying sequence, the level of SGNL-M/C/Y set initially is '777' or less because of an error in the memory backup data.
		xx6	During copying sequence, the level of REF-M/C/Y set initially is '200' or less because of an error in the memory backup data.
		xx6	During copying sequence, the level of PT-REF-M/C/Y set initially is '777' or less because of an error in the memory backup data.
		xx6	During copying sequence, the level of PT-SIG-M/C/Y is '683' or less or that of PT-SIGK is '305' or less because of an error in the memory backup data.
		xx6	During copying sequence, the level of PT-REF-D is '400' or less because of an error in the memory backup data.
		xx6	During copying sequence, the level of PT-SIG-D is '400' or less because of an error in the memory backup data.
		xx6	During copying sequence, the level of D-M-TRGT/D-C-TRGT/D-Y-TRGT (developer target value) is ' 700 ' or less because of an error in the memory backup data.
		xx7	During copying sequence, the level of SGNL-M/C/Y set initially is ' 859 ' or more because of an error in the memory backup data.
		xx7	During copying sequence, the level of REF-M/C/Y set initially is ' 930 ' or more because of an error in the memory backup data.

Code	Cause		Timing of detection
E020	The backup data on the CPU PCB is faulty* or the initial settings have not been made. *Be sure to initialize the RAM of the DC-CPU and enter the values recorded on the service label.	$\mathrm{xx} 72$	During copying sequence, the level of PT-REF-M/C/Y/K set initially is ' 859 ' or more because of an error in the memory backup data.
		xx73	During copying sequence, the level of PT-SIG-M/C/Y set initially is '749' or more or that of PT-SIG-K is '371' or more because of an error in the memory backup data.
		xx74	During copying sequence, the level of PT-REF-D set initially is '1000' or more because of an error in the memory backup data.
		xx75	During copying sequence, the level of PT-SIG-D set initially is '1000' or more because of an error in the memory backup data.
		xx76	During copying sequence, the level of D-M-TRGT/D-C-TRGT/D-Y-TRGT (developer target value) is '930' or more because of an error in the memory backup data.
	The developer has deteriorated. - The developing cylinder fails to rotate. - The developing assembly is not locked. - The toner concentration (patch detection) sensor is faulty. - The developer inside the developing assembly is faulty. - The toner level sensor is faulty. - The concentration sensor is subjected to stray light (no cover, front cover open). - The photosensitive drum has deteriorated.	xx80	When samplings are taken during copying sequence, the level of WINDOW-M/C/Y/K (window soiling correction coefficient) is ' 130% ' or more.
		xx81	When samplings are taken during copying sequence, the level of WINDOW-M/C/Y/K (window soiling correction coefficient) is '70' or less.
		xxA0	When samplings are taken during copying sequence, the level of SGNL-M/C/Y is '306' or less.
		xxA1	When samplings are taken during copying sequence, the level of REF-M/C/Y set initially decreases (intensity) by 30% or more.
		xxA2	When samplings are taken during copying sequence, the level of PT-SIG-K is '51' or less.

Code	Cause	Timing of detection
E020	The developer has deteriorated. - The developing cylinder fails to rotate. - The developing assembly is not locked. - The toner concentration (patch	xxB0 When samplings are taken during copying sequence, the level of SGNL-M/C/Y is '1020' or more (when feeding 10 sheets or more continuously).
	detection) sensor is faulty. - The developer inside the developing assembly is faulty. - The toner level sensor is faulty. - The concentration sensor is	xxB1 When samplings are taken during copying sequence, the level of REF-M/C/Y set initially increases (intensity) by '30\%' or more.
	front cover open). - The photosensitive drum has deteriorated.	xxB2 When samplings are taken during copying sequence, the level of PT-SIG-M/C/Y is '1020' or more and that of PT-SIG-K is '550' or more.
		$\mathrm{xxC0}$ When samplings are taken during copying sequence, the level of DENS-M/C/Y/K is ' $+3 \%$ ' (when feeding 20 sheets continuously).
		xxD0 When samplings are taken during copying sequence, the level of DENS-M/C/Y/K is '+3\%' (when feeding 20 sheets or more continuously).
	- The developer has deteriorated. - The developing cylinder fails to rotate. - The developer is not locked. - The toner concentration sensor is	xxE0 When samplings are taken during copying sequence, the level of DENS-M/C/Y/K has exceeded '-5\%'.
	- The developer inside the developing assembly is not stirred properly. - The toner level sensor is faulty. - The sensor is subjected to stray light (no cover, front cover open). - The photosensitive drum has deteriorated, or the toner level sensor is faulty.	
	- The hopper motor is faulty. - The hopper motor has an open circuit.	00FF After the hopper motor has turned on, the hopper motor lock signal (HOPMLK) is '0' for 0.1 sec or more.
		xxFF After the hopper motor has turned on, the hopper motor lock signal (HOPMLK) is '0' for 0.1 sec or more (the toner supply clutch is on).

Code	Cause	Timing of detection
E021	- The developing locking motor (PM1, PM2, PM3, PM4) is faulty. - The developing assembly HP sensor (PS49, PS51, PS53, PS55) is faulty. - The developing locking driver PCB is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	0100 When the power switch is on, the M developing assembly HP sensor is ' 0 '. 0200 When the power switch is on, the C developing assembly HP sensor is ' 0 '. 0300 When the power switch is on, the Y developing assembly HP sensor is ' 0 '. 0400 When the power switch is on, the Bk developing assembly HP sensor is ' 0 '. 0101 When the developing assembly is locked, the M developing assembly HP sensor is ' 1 '. 0201 When the developing assembly is locked, the C developing assembly HP sensor is ' 1 '. 0301 When the developing assembly is locked, the Y developing assembly HP sensor is ' 1 '. 0401 When the developing assembly is locked, the Bk developing assembly HP sensor is ' 1 '.
E030	- The jumper connector of J1050 on the DC driver PCB is disconnected. - The DC driver PCB is faulty.	A short circuit is detected in the counter switching signal.
E040	- The lifter motor drive system is subjected to an overload. - The lifter motor (M11, M12/ DM12, M13/DM13, M15) is faulty. - The CPU PCB is faulty.	0001 When the cassette 1 lifter motor is on, an overcurrent is detected in the motor. 0002 When the cassette 2 (for CLC1150, cassette 1) lifter motor is on, an overcurrent is detected in the motor. 0003 When the cassette 3 (for CLC1150, cassette 2) lifter motor is on, an overcurrent is detected in the motor. 0004 When the multifeeder lifter motor is on (lifter is moving up), an overcurrent is detected in the motor. 0005 When the multifeeder lifter motor is on (lifter is moving down), an overcurrent is detected in the motor.

Code	Cause	Timing of detection
Е061	- The laser is faulty.	0051 Vd 1 is 300 V or less and, in addition, Vd2 is 500 V or less.
	- The laser light is inadequate. - The bending mirror is faulty. - The laser shutter is faulty.	0052 VL 1 is 200 V or more and, in addition, VL2 is 250 V or more.
	- The laser is faulty.	0053 Vd 1 is 100 V or less and, in addition, is 150 V or less.
	- The dark area potential attenuation is at the upper control limit.	0060 The dark are potential attenuation value is 150 V or more.
	- The grid bias is at the upper control limit.	0070 The grid bias output value is 900 V or more.
	- The grid bias is at the lower control limit.	0071 The grid bias output value is 100 V or less.
	- The developing bias is at the upper control limit.	xx80 The developing bias output value is 700 V or more.
	- The developing bias is at the lower control limit.	xx81 The developing bias output value is 200 V or less.
	- Vd1 is at the upper measurement limit. - The photosensitive drum has deteriorated.	0090 Vd 1 is 700 V or more.
	- VL1 is at the upper measurement limit.	0091 VL1 is 200 V or more.
	- Vd2 is at the upper measurement limit.	0092 Vd 2 is 850 V or more.
	- VL2 is at the upper measurement limit.	0093 VL2 is 250 V or more.
	- Vd1 is at the lower measurement limit.	0094 Vd 1 is 350 V or less.
	- VL1 is at the lower measurement limit.	0095 VL 1 is 10 V or less.
	- Vd2 is at the lower measurement limit.	0096 Vd 2 is 550 V or less.
	- VL2 is at the lower measurement limit.	0097 VL2 is 50 V or less.

Code	Cause	Timing of detection
E062	- SSR2 has a short circuit. - The CPU PCB is faulty.	While the DC-CPU keeps the cassette heater/drum heater SSR2 off, SSR2 is on.
E067	- The separation charging assembly is faulty. - The internal/external static eliminator is faulty. - The HVT-AC PCB is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	An error signal (AC-ERR* $=0$) has been generated by the HVT-PCB.
E071	- The side A sensor (PS2) is faulty. - The side B sensor (PS3) is faulty. - The C sensor (PS4) is faulty. - The signal plate is faulty. - The drum motor drive system is subjected to an overload. - The transfer drum is not locked properly. - The DC driver PC is faulty. - The CPU PCB is faulty.	F000 The side A sensor, side B sensor, or C sensor does not detect the signal plate within 10 sec after the operation to lock the transfer drum has started.
		0001 There is an error in the falling edge timing of the signal plate detected by the side B sensor.
		0002 There is an error in the rising edge timing of the signal plate detected by the side B sensor.
		0003 There is an error in the rising edge timing of the signal plate detected by the C sensor.
		0004 There is an error in the falling edge timing of the single plate C detected by the C sensor.
		0005 There is an error in the rising edge timing of the signal plate detected by the side A sensor.
		0006 There is an error in the falling edge timing of the signal plate detected by the side A sensor.
		0007 There is an error in the rising edge timing of the signal plate D detected by the C sensor.
		0008 There is an error in the falling edge timing of the signal plate D detected by the C sensor.
		1001 The falling edge signal of the signal plate to be detected by the side B sensor is not generated after the falling edge signal of the signal plate D detected by the C sensor has been generated.

\begin{tabular}{|c|c|c|c|}
\hline Code \& Cause \& \multicolumn{2}{|r|}{Timing of detection} \\
\hline \multirow[t]{7}{*}{E071} \& \multirow[t]{7}{*}{\begin{tabular}{l}
- The side A sensor (PS2) is faulty. \\
- The side B sensor (PS3) is faulty. \\
- The C sensor (PS4) is faulty. \\
- The signal plate is faulty. \\
- The drum motor drive system is subjected to an overload. \\
- The transfer drum locking mechanism is faulty. \\
- The DC driver PCB is faulty. \\
- The CPU PCB is faulty.
\end{tabular}} \& \multirow[t]{2}{*}{1002

1003} \& The rising edge signal of the signal plate to be detected by the side B sensor is not generated after the rising edge signal of the signal plate C detected by the C sensor has been generated.

\hline \& \& \& The rising edge signal of the signal plate C to be detected by the C sensor is not generated after the falling edge of the signal plate detected by the side B sensor has been generated.

\hline \& \& 1004 \& The falling edge signal of the signal plate C to be detected by the C sensor is not detected after the rising edge of the signal plate detected by the side B sensor has been generated.

\hline \& \& 1005 \& The rising edge signal of the signal plate to be detected by the side A sensor is not generated after the falling edge of the signal plate C detected by the C sensor has been generated.

\hline \& \& 1006 \& The falling edge signal of the signal plate to be detected by the side A sensor is not generated after the rising edge of the signal plate D detected by the C sensor has been generated.

\hline \& \& 1007 \& The rising edge signal of the signal plate D to be detected by the C sensor is not generated after the rising edge signal of the signal plate detected by the side A sensor has been generated.

\hline \& \& 1008 \& The rising edge signal of the signal plate D to be detected by the C sensor is not generated after the falling edge signal of the signal plate detected by the side A sensor has been generated.

\hline
\end{tabular}

Code	Cause		Timing of detection
E071	- The side A sensor (PS2) is faulty. - The side B sensor (PS3) is faulty. - The C sensor (PS4) is faulty. - The signal plate is faulty. - The drum motor drive system is subjected to an overload. - The transfer drum locking mechanism is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty. - Side A sensor (PS2) is faulty. - Side B sensor (PS3) is faulty. - The C sensor (PS4) is faulty. - The signal plate is faulty. - The drum motor drive system is subjected to an overload. - The transfer drum is not locked properly. - The DC driver PCB is faulty. - The CPU PCB is faulty.	1101 The falling edge signal of the signal plate to be detected by the side B sensor is generated 10 ms earlier after the falling edge signal of the signal plate D detected by the C sensor has been generated. 1102 The rising edge signal of the signal plate to be detected by the side B sensor is generated 10 ms earlier after the rising edge signal of the signal plate C detected by the C sensor has been generated.	
		1103	The rising edge signal of the signal plate C to be detected by the C sensor is generated 10 ms earlier after the falling edge signal of the signal plate detected by the side B sensor has been generated.
		1104	The falling edge signal of the signal plate C to be detected by the C sensor is generated 10 ms earlier after the rising edge signal of the signal plate detected by the side B sensor has been generated.
		1105	The rising edge of the signal plate to be detected by the side A sensor is generated 10 ms earlier after the falling edge signal of the signal plate C detected by the C sensor has been generated.
		1106	The falling edge signal of the signal plate to be detected by the side A sensor is generated 10 ms earlier after the rising edge signal of the signal plate D detected by the C sensor has been generated.
		1107	The rising edge signal of the signal plate D to be detected by the C sensor is generated 10 ms earlier after the rising edge of the signal 1 plate to be detected by the side A sensor has been generated.

Code	Cause		Timing of detection
E071	- The side A sensor (PS2) is faulty. - The side B sensor (PS3) is faulty. - The C sensor (PS4) is faulty. - The signal plate is faulty. - The drum motor drive system is subjected to an overload. - The transfer drum is not locked properly. - The DC driver PCB is faulty. - The CPU PCB is faulty.	1207 1208	The rising edge signal of the signal plate D to be detected by the C sensor is generated 10 ms later after the rising edge signal of the signal plate detected by the side A sensor has been detected. The rising edge signal of the signal plate to be detected by the C sensor is generated 10 ms later after the falling edge signal of the signal plate detected by the side A sensor has been generated.
E072	- The transfer drum cleaner brush motor (M8) is faulty. - The polishing roller motor (M9) is faulty. - The motor drive system is subjected to an overload. - The attraction/transfer locking cam motor (PM7) is faulty. - The attraction/transfer locking cam HP sensor (PS8) is faulty. - The registration path driver PCB is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	0002	The motor lock signal (TRCMLK) is ' 0 ' for 1 sec or more while the transfer drum cleaner brush motor is rotating. An overcurrent is detected for 1 sec or more while the polishing roller motor is rotating. The attraction/transfer looking cam HP sensor does not go ' 1 ' within 4 sec after the attraction/transfer locking cam motor has started to rotate.

Code	Cause	Timing of detection
E073	- The transfer unit drawer connector is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	0001 During copying, the drawer connect signal (FT-CNCT*) of the transfer unit lever is ' 1 '. 0002 During copying operation, the connection signal (TD-CNCT) of the drawer connector of the transfer unit is ' 1 '. 0003 During copying, the drawer connect signal (CONNECT*) of the registration path unit is '1'.
E074	- The transfer drum locking motor (PM5) is faulty. - The transfer drum HP sensor (PS57) is faulty. - The transfer locking driver PCB is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	0000 The transfer drum HP sensor does not go '1' when the transfer drum locking motor has been kept on for a specific period of time. 0001 The transfer drum HP sensor does not go ' 0 ' when the transfer drum locking motor has been kept on for a specific period of time.
E079	- The transfer drum cleaner HP sensor (PS59) is faulty. - The transfer locking driver PCB is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	0000 The transfer drum cleaner HP sensor does not go '1' when the transfer drum cleaner locking motor has been kept on for a specific period of time. 0001 The transfer drum cleaner HP sensor does not go ' 0 ' when the transfer drum cleaner locking motor has been kept on for a specific period of time.
E100	- The laser unit is faulty. - The laser driver PCB is faulty. - The laser controller PCB is faulty. - The CPU PCB is faulty.	The BD signal cannot be detected for 1 sec or more when potential control operation starts.
E110	- The laser scanner motor (M3) is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	0000 The laser scanner motor ready signal (LSMRDY) is ' 1 ' for 0.5 sec or more while the laser scanner motor is rotating.
E120	- The laser controller unit (laser thermistor, laser heater, laser controller PCB) is faulty. - The CPU PCB is faulty.	0001 The laser heater temperature has exceeded $60^{\circ} \mathrm{C}$. 0002 When the machine internal temperature is $20^{\circ} \mathrm{C}$ or more, the laser heater does not reach a specific temperature within 20 min .
E190	- The laser controller PCB is faulty. - The CPU PCB is faulty.	An error has occurred while wiring data to the laser controller PCB from the CPU PCB at power-on.
E191	- The connector of the DC driver PCB is disconnected. - The DC fuse PCB is faulty (blown fuse). - The DC driver PCB is faulty.	0000 At powe-on, a read/write error occurred in the register of the DC driver PCB.

Code	Cause	Timing of detection
(E202) No code indication; keys are disabled.	- The original scanner HP sensor (PS1) is faulty. - The original scanner motor (PM15) is faulty. - The original scanner motor driver PCB is faulty. - The CPU PCB is faulty.	The original scanner home position signal (SCHP) is not generated within 10 sec after the power switch has been turned on or the Copy Start key has been pressed.
E208	- The DC power supply to the original scanner motor driver PCB is faulty. - The wiring or connectors are faulty. - The original scanner motor driver PC is faulty. - The CPU PCB is faulty.	The communication between the original scanner driver PCB and the CPU PCB is interrupted or 5 sec or more.
E220	- The scanning is faulty. - The lamp regulator PCB is faulty.	During standby, the scanning lamp turns on even though the R-CPU keeps the scanning lamp ON signal off. During copying, the scanning lamp turns off even though the R-CPU keeps the scanning lamp ON signal on.
E305	- The IP-MAIN PCB is faulty. - The IP-PRJ PCB is faulty. - The IP-ED PCB is faulty.	At power-on, RAM access within the IP-MAIN PCB does not take place normally. RAM access within the IP-PRJ PCB or IP-ED PCB does not take place normally. (For E305, the code is indicated when copying is started in projector mode or area select mode.) 0001 BD error (same as E100) 0002 concentration conversion RAM error 0004 B shading correction RAM error 0008 G shading correction RAM error 0010 R shading correction RAM error 0020 color correction RAM error 0040 original scanner motor error 0100 IP-ED PCB RAM error or disconnection 0400 IP-PRJ PCB RAM error or disconnection 0800 IP-IF PCB RAM error 1000 IP-IF PCB RAM error

Code	Cause	Timing of detection
E351	- The IP-MAIN PCB is faulty. - The IP-ECO PCB is faulty. - The connection between IPMAIN, IP-ECO PCB, and laser driver PCB is faulty.	The IP-ECO PCB and the IP-MAIN PCB are not connected. The IP-ECO PCB and its ROM are a poor match.
E620	- The IP-ED PCB is faulty. - The IP-MAIN PCB is faulty.	The communication between IP-EDPCB and IP-MAIN PCB is interrupted for 5 sec or more.
ㄷ634	- The projector lamp is faulty. - The projector thermal switch is faulty.	The LAOFF signal remains ' 0 ' when the projector controller PCB turns on the LCNT signal.
E700	- The CPU PCB is faulty. - The DC power supply is faulty.	The communication between the DC-CPU and the R-CPU on the CPU PCB is interrupted for 5 sec or more.
E717	- An error has occurred in conjunction with the copy data controller/remote diagnosis device.	The copy data controller or the remote diagnostic device has been physically detached.
$E 718$	- The IP-PRJ PCB is faulty. - The IP-MAIN PCB is faulty. - The projector controller PCB is faulty.	The communication between the projector controller PCB and the IPMAIN PCB is interrupted for 5 sec or more.
E719	- The wiring is faulty. - The coin vendor is faulty. - The CPU PCB is faulty.	0000 The communication between the coin vendor and the CPU PCB is disrupted.
E800	- The power switch is faulty. - The DC harness is faulty. - The DC driver PCB is faulty. - The CPU PCB is faulty.	An open circuit has been detected in the auto shut-off signal.
E803	- The 24 V output is faulty. - The DC power cut relay is faulty. - The DC fuse PCB is faulty. - The CPU PCB is faulty. - The DC driver PCB is faulty.	0000 During copying operation, the CPU does not detect a 24 V output for about 5 sec when the transfer unit lever switch, front left door switch, and delivery door switch are closed.
Е804	- The operation of a fan (indicated by detail code) is faulty. - The CPU PCB is faulty. - The DC driver PCB is faulty.	0001 The electrical unit fan (FM8) has stopped to rotate in error. 0002 The IP cooling fan (FM7) has stopped to rotate in error. 0003 The exhaust fan (FM2) has stopped to rotate in error. 0004 The ozone suction fan (FM5) has stopped to rotate in error. 0005 The toner suction fan (FM6) has stopped to rotate in error. 0006 The laser scanner motor cooling fan (FM4) has stopped to rotate in error. 0008 The primary charging assembly fan (FM3) has stopped to rotate in error.

Code	Cause	Timing of detection
E804	- The operation of a fan (indicated by detail code) is faulty. - The CPU PCB is faulty. - The DC driver PCB is faulty.	000A The back suction fan (FM16) has stopped to rotate in error. 000B The power supply cooing fan 1/2 (FM9/FM13) has stopped in error.
		000C The power supply cord base fan (FM17) has stopped to rotate in error.
		0102The original exposure system cooling fan 2/3 (FM14/FM15) has stopped to rotate in error.

- Caution:

1. The copier may be reset by turning its power switch off and then on when its self diagnostic mechanism has turned on. This, however, does not apply to E000, E005, E008, E020 (if xxE0), E717 or E719. This is to prevent possible damage by an overheating fixing roller occurring if these errors were designed to be reset while the thermistor has an open circuit.
2. The fixing cleaning belt counter (COPIER>COUNTER>MISC>FIX-WEB in service mode) is cleared when the fixing cleaning belt is replaced.
3. 'E004' is indicated on the control panel for about 1.6 sec when the error occurs: thereafter, the power switch wil be disabled (i.e., error auto power-off is activated).
If such is the case, turn on the power switch while the left front cover is open. The error code may be checked by COPIER>DISPLAY>ERR in service mode.

Resetting E000, E005, E008, E020, E717, or E719

1) Start service mode, and select COPIER $>$ FUNCTION $>C L E A R>E R R$ (to highlight).
2) Press the OK key.
3) Turn off and then on the power switch.

E717
E717 may be prevented by temporarily disconnecting the communication line using service mode as follows before disconnecting the copy data controller or the remot diagnostic device connected to the copier:

1) Start service mode, and select COPIER>OPTION>IN-FACE>B-CLR (to highlight).
2) Enter ' 0 ', and press the OK key.
3) End service mode, and perform appropriate servicing.

B. RDF

Note:

If the self diagnostic mechanism has turned on, you can reset the machine by turning the copier's power switch off and then on.
If you want to continue to make copies while the RDF is out of order, place the original on the copyboard glass after lifting the RDF.

Code	Cause	Timing of detection
E400	- The communication of data with the copier is faulty.	The communication is monitored at all times, and it is interrupted for 5 sec or more.
E401	- The pickup motor (M1) is faulty. - The pickup roller home position sensor 1 (S8) is faulty.	The state of the sensor remains unchanged after the pickup motor has been driven for 2 sec or more.
E402	- The belt motor (M3) is faulty. - The belt motor clock sensor (S11) is faulty.	The number of belt motor clock pulses is lower than a specific value for 100 msec .
E403	- The reversal motor (M2) is faulty. - The slip sensor (S10) is faulty.	The number of slip clock pulses is lower than a specific value for 100 msec .
E404	- The delivery motor (M5) is faulty. - The delivery motor clock sensor (S12) is faulty.	The number of delivery motor clock pulses is lower than a specific value for 200 msec .
E405	- The pickup motor (M1) is faulty. - The pickup motor clock sensor (S12) is faulty.	The number of pickup motor clock pulses is lower than a specific value for 200 msec .
E407	- The tray drive motor (M6) is faulty. - The tray position sensor (S25) is faulty.	The state of the sensor remains unchanged after the tray drive motor has been driven for 2 sec or more.
E408	- The feeder motor (M8) is faulty. - The tray position sensor (S25) is faulty.	The number of feed motor clock pulses is lower than a specific value for 100 msec .
E411	- The registration sensor $1(\mathrm{~S} 3)$ is faulty. - The skew sensor 1 (S4) is faulty. - The manual feed registration sensor (S19) is faulty. - The image leading edge sensor (S20) is faulty. - The original sensor 1 (S7) is faulty.	The output of each sensor is a specific value or more in the absence of paper.

C. Sorter

Code	Cause	Timing of detection
E510	- The feed motor (M1) fails to rotate.	The clock signal from the feed motor clock sensor (PI5) is absent for 250 msec .
E516	- The low-speed feed motor (M10) fails to rotate.	The clock signal from the feed motor clock sensor (PI23) is absent for 250 msec or more.
E517	- The home position of the buffer path unit locking cam cannot be detected.	The home position cannot be detected within a specific period of time (varying from copier to copier) after the Copy Start key has been pressed.
E522	- The push bar motor (M7) fails to rotate.	The operation fails to end within 2000 msec after the motor drive signal has been generated.
E523	- The reference wall motor (M6) fails to rotate.	The operation does not end within 2000 msec after the motor drive signal has been generated.
E524	- The multi guide motor (M5) fails to rotate.	The operation does not end within 2000 msec after the motor drive signal has been generated.
E525	- The bin internal paper sensor 1 (S3, S4) auto adjustment mechanism is faulty.	The auto adjustment mechanism of the bin internal paper sensor 1 (S3, S 4) fails, or an error occurs in the auto adjustment value.
E526	- The bin internal paper sensor 2 (S6, S7) auto adjustment mechanism is faulty.	The auto adjustment mechanism of the bin internal paper sensor 2 (S6, S7) fails, or an error occurs in the auto adjustment value.
E530	- The guide bar motor (M8) fails to rotate.	The operation does not end within a specific period of time after the motor drive signal has been generated. - for front access, 5000 msec - except front access, 2000 msec
E531	- The stapler unit drive motor (M4) fails to rotate.	The operation does not end within 2000 msec after the motor drive signal output has been generated. The clock signal from the motor clock sensor (PI8) is absent for 250 msec or more. The input signal from the swing home position sensor (PI9) remains unchanged for 1000 msec .

Code	Cause	Timing of detection
Е532	- The stapler unit shift motor (M3) fails to rotate.	The operation does not end within 5000 msec after the motor drive signal has been generated.
Е533	- The stapler internal paper sensor auto adjustment mechanism is faulty.	The auto adjustment mechanism of the stapler internal paper sensor fails, or an error occurs in the auto adjustment value.
Е540	- The bin shift motor (M9) fails to rotate.	The operation fails to end within a specific period of time after the motor drive signal has been generated. - for initialization, 20000 msec - except initialization, 2000 msec The clock plate sensor of the motor does not generate clock signals for 250 msec . The input signal from the lead cam position sensor (PI20) remains unchanged for 2000 msec .
E550	- The DC output from the sorter controller PCB is faulty.	An error has occurred in the DC output ($24 \mathrm{VL}, 24 \mathrm{VP}$) from the sorter controller PCB.

A. General Timing Chart

B. Signals and Abbreviations

1. Signals

400*
AC-ERR*
ACSBY
AITOP
APCHOLD
BD
BITOP
BK-REF
BK-SGNL
BKTEP
BLRMA
BLRMA*
BLRMB
BLRMB*
BLRMHL

BLRMHP

C-REF
C-SGNL
C1LFD
C1LFMON
C1PAD
C1PLVR
C1PUCL
C1PUMA
C1PUMA*
C1PUMB
C1PUMB*
C1PUMHL
C2LFD/D1LFD
C2LFMON
C2PAD/D1PAD
C2PLVR/D1PLVR
C2PUCL/D1PUCL
C2PUMA/D1PUMA
C2PUMA*/D1PUMA*
C2PUMB/D1PUMB
C2PUMB*/D1PUMB*
C2PUMHL/D1PUMHL
C2PWVR
C2SZ0
C2SZ1
C3LFD/D2LFD
C3LFMON
C3PAD/D2PAD
C3PLVR/D2PLVR

LASER SELECT command
HIGH VOLTAGE TRANSFORMER AC ERROR signal
AC STANDBY command
A-SIDE SENSOR signal
AUTO POWER CONTROL HOLD command
BEAM DETECT signal
B-SIDE SENSOR signal
BK-REFERENCE signal
BK-TONER DENSITY signal
BK-TONER EMPTY signal
ATTRACTION/TRANSFER PRESSURE CAM MOTOR command ATTRACTION/TRANSFER PRESSURE CAM MOTOR
HOLD command
ATTRACTION/TRANSFER PRESSURE
CAM HOME POSITION SENSOR signal
C-REFERENCE signal
C-TONER DENSITY signal
CASSETTE-1 LIFTER SENSOR signal
CASSETTE-1 LIFTER MOTOR ON command
CASSETTE-1 PAPER SENSOR signal
CASSETTE-1 PAPER LEVEL VR signal
CASSETTE-1 PICK-UP CLUTCH command
CASSETTE-1 PICK-UP MOTOR HOLD command
CASSETTE-2/1 LIFTER SENSOR signal
CASSETTE-2/1 LIFTER MOTOR ON command
CASSETTE-2/1 PAPER SENSOR signal
CASSETTE-2/1 PAPER LEVEL VR signal
CASSETTE-2/1 PICK-UP CLUTCH command
CASSETTE-2/1 PICK-UP MOTOR HOLD command
CASSETTE-2 PAPER WIDTH VR signal
CASSETTE-2 PAPER LENGTH SENSOR signal 0
CASSETTE-2 PAPER LENGTH SENSOR signal 1
CASSETTE-3/2 LIFTER SENSOR signal
CASSETTE-3/2 LIFTER MOTOR ON command
CASSETTE-3/2 PAPER SENSOR signal
CASSETTE-3/2 PAPER LEVEL VR signal

C3PUCL/D1PUCL
C3PUMA/D2PUMA
C3PUMA*/D2PUMA*
C3PUMB/D2PUMB
C3PUMB*/D2PUMB*
C3PUMHL/D2PUMHL
C3PWVR/D2PWVR
C3SZ0/D3SZ0
C3SZ1/D3SZ1
CBRCMA
CBRCMB
CDEVA
CDEVA*
CDEVB
CDEVB*
CDEVCL
CDEVHL
command
CDEVHP
CITOP
CTEP
CTNRSUP*
DCFMERR
DELFLSL*
DINPD
DJGHP
DJOGMA
DJOGMA*
DJOGMB
DJOGMB*
DLCOVD
DLFMERR
DLFMON
DLVP1D
DLVP2D
DREPD
DRHERR
DRHOFF
DRMCLK
DRMCW
DRMFG
DRMON
DRMRDY
DRMSP0
DRMSP1
DUPFDCL*
DUPMLK
DUPMON
DUPPFSL*
DUPPPD
DUPSAPD
DUPUMA
DUPUMA*

CASSETTE-3/2 PICK-UP CLUTCH command CASSETTE-3/2 PICK-UP MOTOR HOLD command CASSETTE-3/2 PAPER WIDTH VR signal CASSETTE-3/2 PAPER SENSOR signal 0 CASSETTE-3/2 PAPER SENSOR signal 1
CLEANER BLADE RECIPROCATING MOTOR command A
CLEANER BLADE RECIPROCATING MOTOR command B
C-DEVELOPING ASSEMBLY ENGAGING
C-DEVELOPING ASSEMBLY ENGAGING MOTOR command C
C-DEVELOPING ASSEMBLY ENGAGING MOTOR command C
C-DEVELOPING ASSEMBLY ENGAGING MOTOR command C
C-DEVELOPING CYLINDER CLUTCH command C
C-DEVELOPING ASSEMBLY ENGAGING C MOTOR HOLD

C-DEVELOPING ASSEMBLY HOME POSITION SENSOR signal C
C SENSOR signal
C-TONER EMPTY signal
C-TONER SUPPLY CLUTCH command
POWER SUPPLY COOLING FAN ERROR signal
DELIVERY PAPER DEFLECTOR SOLENOID command
DUPLEXING UNIT INLET PAPER SENSOR signal
PAPER JOGGING GUIDE HOME POSITION SENSOR signal DUPLEXING UNIT PAPER JOGGING GUIDE MOTOR command DELIVERY COVER OPEN SENSOR signal
DELIVERY COOLING FAN ERROR signal
DELIVERY COOLING FAN ON command
DELIVERY VERTICAL PATH-1 SENSOR signal
DELIVERY VERTICAL PATH-2 SENSOR signal
DUPLEXING UNIT REVERSAL PAPER SENSOR signal
DRUM HEATER ERROR signal
DRUM HEATER OFF command
DRUM MOTOR CLOCK signal
DRUM MOTOR ROTATIONAL DIRECTION signal
DRUM MOTOR FG signal
DRUM MOTOR ON command
DRUM MOTOR READY signal
DRUM MOTOR SPEED CONTROL signal 0
DRUM MOTOR SPEED CONTROL signal 1
DUPLEXING UNIT FEEDER CLUTCH command
DUPLEXING UNIT MOTOR LOCK signal
DUPLEXING UNIT MOTOR command
DUPLEXING UNIT PAPER FEEDING ROLLER SOLENOID command
DUPLEXING UNIT PATH PAPER SENSOR signal
DUPLEXING UNIT TRAY PAPER SENSOR signal
DUPLEXING UNIT PICK-UP MOTOR command
DUPLEXING UNIT PICK-UP MOTOR command

DUPUMB
DUPUMB*
DUPUMHL
DVERPCL
ENDPLSL*
EXFMERR
EXFMON
FDC1D
FDC2D/FDD1D
FDC3D/FDD2D
FDCOVD
FXMLK
FXMON
FXMSP0
FXMSP1
FXOILD
GGUIDSL
HOPMCW
HOPMLK
HOPMON
HUM
HVATC
HVATI
HVCC
HVCI
HVGI
HVGIC
HVIDCC

HVIDCI

HVIOC

HVPR
HVTRC
HVTRI
INDELD
IPFMERR
IPFMON
ITOP
KDEVA
KDEVA*
KDEVB
KDEVB*
KDEVCL
KDEVHL
KDEVHP
KEYSW*
KTNRSUP*
L-ON
L-RDY
LCOVD
LFRCWD

DUPLEXING UNIT PICK-UP MOTOR command
DUPLEXING UNIT PICK-UP MOTOR command DUPLEXING UNIT PICK-UP MOTOR HOLD command DELIVERY VERTICAL PATH CLUTCH command DUPLEXING UNIT STACK GUIDE SOLENOID command EXHAUST FAN ERROR signal EXHAUST FAN ON command CASSETTE-1 OPEN SENSOR signal CASSETTE-2/1 OPEN SENSOR signal CASSETTE-3/2 OPEN SENSOR signal PICK-UP ASSEMBLY COVER OPEN SENSOR signal FIXING MOTOR LOCK signal FIXING MOTOR ON command FIXING MOTOR SPEED CONTROL signal 0 FIXING MOTOR SPEED CONTROL signal 1 FIXING OIL LEVEL SENSOR signal
ATTRACTION ROLLER SOLENOID command HOPPER MOTOR ROTATIONAL DIRECTION signal HOPPER MOTOR LOCK signal
HOPPER MOTOR ON command
ENVIRONMENT SENSOR HUMIDITY signal
ATTRACTION CORONA CURRENT ON/OFF CONTROL signal
ATTRACTION CORONA CURRENT LEVEL CONTROL signal
POST-CLEANING CORONA ON/OFF CONTROL signal
POST-CLEANING CORONA LEVEL CONTROL signal
GRID BIAS LEVEL CONTROL signal
GRID BIAS ON/OFF command
INTERNAL STATIC ELIMINATOR DC ON/OFF CONTROL signal
INTERNAL STATIC ELIMINATOR DC LEVEL CONTROL signal
EXTERNAL/INTERNAL STATIC
ELIMINATOR AC ON/OFF CONTROL signal
PRIMARY CURRENT ON/OFF command
TRANSFER CORONA CURRENT ON/OFF CONTROL signal TRANSFER CORONA CURRENT LEVEL CONTROL signal INSIDE DELIVERY PAPER SENSOR signal
IP COOLING FAN ERROR signal
IP COOLING FAN ON command
IMAGE LEADING EDGE signal
BK-DEVELOPING ASSEMBLY ENGAGING MOTOR BK command
BK-DEVELOPING CYLINDER CLUTCH command
BK-DEVELOPING ASSEMBLY ENGAGING MOTOR HOLD command
BK-DEVELOPING ASSEMBLY HOME POSITION SENSOR signal
KEY SWITCH signal
BK-TONER SUPPLY CLUTCH command
LASER ON command
LASER READY command
LEFT COVER OPEN SENSOR signal
LOWER FIXING ROLLER CLEANING WEB SENSOR signal

LHON	LOWER FIXING HEATER ON command
LSMCLK	LASER SCANNER MOTOR CLOCK signal
LSMON	LASER SCANNER MOTOR command
LSMRDY	LASER SCANNER MOTOR READY signal
LTHM3	LOWER FIXING ROLLER TEMPERATURE 3 signal
LTHM4	LOWER FIXING ROLLER TEMPERATURE 4 signal
LWEBSL	LOWER CLEANING WEB SOLENOID command
M-REF	M-REFERENCE signal
M-SGNL	M-TONER DENSITY signal
MDEVA	M-DEVELOPING ASSEMBLY ENGAGING MOTOR command
MDEVA*	M-DEVELOPING ASSEMBLY ENGAGING MOTOR command
MDEVB	M-DEVELOPING ASSEMBLY ENGAGING MOTOR command
MDEVB*	M-DEVELOPING ASSEMBLY ENGAGING MOTOR command
MDEVCL	M-DEVELOPING CYLINDER CLUTCH command
MDEVHL	M-DEVELOPING ASSEMBLY ENGAGING MOTOR
	HOLD command
MDEVHP	M-DEVELOPING ASSEMBLY HOME POSITION
	SENSOR signal
MFCOVD	MULTIFEEDER OPEN SENSOR signal
MFFDCL	MULTIFEEDER FEED CLUTCH command
MFLFMA	MULTIFEEDER LIFTER MOTOR command A
MFLFMB	MULTIFEEDER LIFTER MOTOR command B
MFLHD	MULTIFEEDER LIFTER-HIGH SENSOR signal
MFLLD	MULTIFEEDER LIFTER-LOW SENSOR signal
MFPAD	MULTIFEEDER PAPER SENSOR signal
MFPUCL	MULTIFEEDER PICK-UP CLUTCH command
MFPUD	MULTIFEEDER PICK-UP SENSOR signal
MFPUSL	MULTIFEED PICK-UP SOLENOID command
MFPWVR	MULTIFEEDER PAPER WIDTH VR signal
MNMON	MAIN MOTOR ON command
MNMRDY	MAIN MOTOR READY signal
MTEP	M-TONER EMPTY signal
MTNRSUP*	M-TONER SUPPLY CLUTCH command
OHPDTC	OHP SENSOR signal
OTDELD*	EXTERNAL DELIVERY PAPER SENSOR signal
OZFMERR	OZONE SUCTION FAN ERROR signal
OZFMON	OZONE SUCTION FAN ON command
PCDTC	PRE-CLEANING PAPER SENSOR signal
PCFDCL	POSTCARD FEEDER CLUTCH command
PCFMERR	PRIMARY CORONA ASSEMBLY FAN ERROR signal
PCFMON	PRIMARY CORONA ASSEMBLY FAN ON command
PCMFMERR	POWER CORD MOUNT FAN ERR signal
PELA1ON	PRE-EXPOSURE LAMP ON command
PH/TX/H200	ORIGINAL TYPE SELECT command
POSTJD	POST-TRANSFER PAPER SENSOR signal
PRDMA	POLISHING ROLLER MOTOR command A
PRDMB	POLISHING ROLLER MOTOR command B
PREJD	PRE-TRANSFER PAPER SENSOR signal
PRERGD	PRE-REGISTRATION SENSOR signal
PRIMFW	PRIMARY CORONA WIRE CLEANING MOTOR NORMAL DRIVE command
PRIMRV	PRIMARY CORONA WIRE CLEANING MOTOR REVERSE DRIVE command
PRM1A	PRE-REGISTRATION MOTOR 1 command

PRM1A*
PRM1B
PRM1B*
PRM1HL
PRM2A
PRM2A*
PRM2B
PRM2B*
PRM2HL
PUFMERR
PUFMON
PUP1SL
PUP2SL/PUPD1SL
PUP3SL/PUPD2SL
PUVP1AD
PUVP2AD
PUVP3AD
PVE
RCOVD
REFMERR
REFMON
REGCL*
REGDTC
REPUCL*
RGRLSL
RPUVPD
SCDSL
SCFMERR
SCFMON
SCHP
SHUTOFF*
SJAMD
SL1FMERR
SL1FMON
SL2FMERR
SL2FMON
SL3FMERR
SL3FMON
SPACC
SPACI
SPDCC
SPDCI
SSPUPSL
STCLOSE*
STOPEN*
TEMP
TNFMERR
TNFMON
TRCMLK
TRCMON
TRDCMA
TRDCMA*
TRDCMB

PRE-REGISTRATION MOTOR 1 command PRE-REGISTRATION MOTOR 1 command PRE-REGISTRATION MOTOR 1 command PRE-REGISTRATION MOTOR 1 HOLD command PRE-REGISTRATION MOTOR 2 HOLD command POWER UNIT COOLING FAN ERROR signal POWER UNIT COOLING FAN ON command PICK-UP ROLLER 1 SOLENOID command PICK-UP ROLLER 2/1 SOLENOID command PICK-UP ROLLER 3/2 SOLENOID command PICK-UP VERTICAL PATH-1 SENSOR signal PICK-UP VERTICAL PATH-2 SENSOR signal PICK-UP VERTICAL PATH-3 SENSOR signal PAGE VERTICAL SYNCHRONOUS command RIGHT COVER OPEN SENSOR signal
REAR INTAKE FAN ERROR signal
REAR INTAKE FAN ON command
REGISTRATION CLUTCH command
REGISTRATION SENSOR signal
DUPLEXING UNIT PICK-UP CLUTCH command
REGISTRATION ROLLER RELEASING SOLENOID command DUPLEXING UNIT PICK-UP VERTICAL PATH SENSOR signal SEPARATION CLAW SOLENOID command
LASER SCANNER MOTOR COOLING FAN ERROR signal LASER SCANNER MOTOR COOLING FAN ON command SCANNER HOME POSITION signal
SHUT OFF signal
SEPARATION SENSOR signal
SCANNING LAMP COOLING FAN 1 ERROR signal SCANNING LAMP COOLING FAN 1 ON command SCANNING LAMP COOLING FAN 2 ERROR signal SCANNING LAMP COOLING FAN 2 ON command SCANNING LAMP COOLING FAN 3 ERROR signal SCANNING LAMP COOLING FAN 3 ON command SEPARATION CORONA AC ON/OFF CONTROL signal SEPARATION CORONA AC VOLTAGE LEVEL CONTROL signal SEPARATION CORONA DC ON/OFF CONTROL signal SEPARATION CORONA DC CURRENT LEVEL CONTROL signal SEPARATION PUSH-UP SOLENOID command STOP PLATE SOLENOID CLOSE command STOP PLATE SOLENOID OPEN command ENVIRONMENT SENSOR TEMPERATURE signal TONER SUCTION FAN ERROR signal TONER SUCTION FAN ON command TRANSFER DRUM CLEANER BRUSH MOTOR LOCK signal TRANSFER DRUM CLEANER BRUSH MOTOR ON command TRANSFER DRUM CLEANER MOTOR command TRANSFER DRUM CLEANER MOTOR command TRANSFER DRUM CLEANER MOTOR command

TRDCMB*
TRDCMHL
TRDCPHP
TRDMA
TRDMA*
TRDMB
TRDMB*
TRDMHL
TRDPHP
UFRCWD
UHON
UTHM1
UTHM2
UWEBSL
VCLK
VD0-VD7
WTNRBD
WTONER
Y-REF
Y-SGNL
YDEVA
YDEVA*
YDEVB
YDEVB*
YDEVCL
YDEVHL

YDEVHP
YTEP
YTNRSUP*

TRANSFER DRUM CLEANER MOTOR command TRANSFER DRUM CLEANER MOTOR HOLD command TRANSFER DRUM CLEANER HOME POSITION SENSOR signal TRANSFER DRUM MOTOR command TRANSFER DRUM MOTOR command TRANSFER DRUM MOTOR command TRANSFER DRUM MOTOR command TRANSFER DRUM MOTOR HOLD command TRANSFER DRUM HOME POSITION SENSOR signal UPPER FIXING ROLLER CLEANING WEB SENSOR signal UPPER FIXING HEATER ON command UPPER FIXING ROLLER TEMPERATURE 1 signal UPPER FIXING ROLLER TEMPERATURE 2 signal UPPER CLEANING WEB SOLENOID command VIDEO CLOCK PULSE command VIDEO0-7 command
WASTE TONER FEEDING SCREW LOCK DETECTING SWITCH signal
WASTE TONER FULL SENSOR signal
Y-REFERENCE signal
Y-TONER DENSITY signal
Y-DEVELOPING ASSEMBLY ENGAGING MOTOR command Y-DEVELOPING CYLINDER CLUTCH command Y-DEVELOPING ASSEMBLY ENGAGING MOTOR HOLD command
Y-DEVELOPING ASSEMBLY HOME POSITION SENSOR signal Y-TONER EMPTY signal
Y-TONER SUPPLY CLUTCH command

2. Abbreviations

AINTR	ADDITIONAL INITIAL ROTATION
CNTR	CONTROL ROTATION
COPY	COPY
DSRDY	SCANNER READY
INTR	INITIAL ROTATION
LSTR	LAST ROTATION
STBY	STANDBY
WMPU	WARM UP

E. Specifications

1. Type

Item	Specifications
Body	Console (reader and printer constructed as one)
Copyboard	Fixed
Light source	Halogen lamp
Lens	Arranged in an array
Image reader	Photocell (BRG line CCD; fixed, mirror scanning)
Photosensitive medium	OPC drum (180-mm dia.)

Table A-1

2. System

Item	Specifications
Copying	Laser beam indirect photostatic transfer
Charging	Corona
Exposure	Slit, laser beam
Contrast adjustment	Automatic
Development	Dry toner projection
Toner supply	Manual (345 g/bottle)
Pickup	Cassette x 2 (CLC1120/1150), cassette x 3 (CLC1130), multifeeder tray, duplexing unit (CLC1150)
Attraction	Pre-transfer static attraction
Transfer	Blade transfer
Separation	Separation claw, separation pushup roll (separation charging assembly as auxiliary mechanism)
Cleaning	Cleaning blade FixingHeat roller Upper: 540 W (100/120 V), 700 W (230 V) Lower: 500 W (common for all models)

Note: The CLC1120 is available only as a non-Japanese model.
Table A-2

3. Functions

Item	Specifications
Resolution	Reader: 400×400 dpi
	Recorder: 800-equivalent x 400 dpi
Gradation	256 gradations
Original type	Sheet, book, 3-D object (2 kg max.)
Maximum original size	A3 (297 x 420 mm) / $279.4 \times 431.8 \mathrm{~mm}$ (11 x 17)
Copy size	AB: 6R5E (Japanese)
	Inch/A: 5R4E (North or Central America)
	AB/Inch: 6R5E (Asia, Oceania, South America)
Zoom	25% to 400% (in 1\% increments)
Wait time	8 min 30 sec or less (at $20^{\circ} \mathrm{C}$) ; 120 V
	8 min or less (at $\left.20^{\circ} \mathrm{C}\right) ; 230 \mathrm{~V}$
First copy time (w/o pre-scanning)	Less than 18.1 sec (full color ; no pre-scanning)
	Less than 9.6 sec (mono color ; no pre-scanning)
Continuous copying	1 to 100 sheets
Copying speed	See Table 1-206.
Copy size	Cassette: $\quad \begin{aligned} & \text { B5 (257 x } 182 \mathrm{~mm}) / \text { LTR to A3 (297 x } 420 \\ & \mathrm{~mm}) / 279.4 \times 431.8 \mathrm{~mm}(11 \times 17)\end{aligned}$
	$\begin{aligned} \text { Multifeeder: } & \mathrm{B} 5(257 \times 182 \mathrm{~mm}) \text { to A3 }(297 \times 420 \mathrm{~mm}) / \\ & 279.4 \times 431.8 \mathrm{~mm}(11 \times 17)+\text { extra length } \\ & \text { size }(12 \times 18)\end{aligned}$
Copy paper type	Cassette: \quad Plain paper (64 to $105 \mathrm{~g} / \mathrm{m}^{2}$), transparency (A4/LTR)
	Multifeeder: Plain paper (64 to $209 \mathrm{~g} / \mathrm{m}^{2}$), transparency (A4/LTR)
	Auto double-sided: Plain paper only (90 to $105 \mathrm{~g} / \mathrm{m}^{2}$) Multifeeder double-sided: Plain paper only (90 to $209 \mathrm{~g} / \mathrm{m}^{2}$)
Cassette	No claw, front loading, 60 mm deep (about 550 sheets of $81.4 \mathrm{~g} / \mathrm{m}^{2}$)
Multifeeder	250 sheets ($81.4 \mathrm{~g} / \mathrm{m}^{2}$)
Duplexing unit	50 sheets ($105 \mathrm{~g} / \mathrm{m}^{2}$)
Copy tray	100 sheets $981.4 \mathrm{~g} / \mathrm{m}^{2}$)
Image margin	Leading edge: $8.0 \pm 1.5 \mathrm{~mm}(8.0 \pm 2.0 \mathrm{~mm})$
	Trailing edge: $2.5 \pm 1.5 \mathrm{~mm}(4.5 \pm 2.0 \mathrm{~mm})$
	Left/right: $\quad 2.0 \pm 1.5 \mathrm{~mm}(2.0 \pm 1.5 \mathrm{~mm})$
	Parentheses represent double-sided copying.
Auto clear	Yes, 2-min standard (may be changed between 0 and 9 min)
Auto power-off	Yes, 1-hr standard (may be changed between 0 and 24hr)
Power Save mode	Yes, (Saving level may be either $-10 \%,-25 \%,-50 \%$, or non-recovery)
Accessories	RDF-E2/RDF-E2 CLC1100 Series Power Supply Kit
	CLC Paper Deck-E1
	CLC Film Projector-D1
	Editor-F1
	CLC IP-ED Board-B1 (hereafter, IP-ED Board)
	CLC Interface Board-D1 (hereafter, IP-IF Board)
	Document Holder-E1
	Cassette Heater Kit-15, Cassette Heater Kit-16 (nonJapanese)
	Control Card-V
	Copy Data Controller-A1
	Remote Diagnostic Device II

Table A-3

4. Others

Item	Specifications
Operating environment	Temperature: 15° to $30^{\circ} \mathrm{C} / 59$ to $86^{\circ} \mathrm{F}$ Humidity: 5% to 80% Atmospheric pressure: 810 to $1013 \mathrm{hPa}(0.8$ to 1.0 atm$)$
Power supply	$100 \mathrm{~V} / 50,60 \mathrm{~Hz} 120 \mathrm{~V} / 60 \mathrm{~Hz}, 230 \mathrm{~V} / 50 \mathrm{~Hz}$
Serial No.	
Maximum power consumption	1.5 kW or less Copying: 719 Wh or less (reference only) Standby: 338 Wh or less (reference only)
Noise	$\begin{array}{ll}\text { Copying: } & 73 \mathrm{~dB} \text { (sound power level) } \\ \text { Standby: } & 59 \mathrm{~dB} \text { (sound power level) }\end{array}$
Ozone	0.02 ppm or less (average; 0.05 ppm max.)
Dimensions	Width: $768 \mathrm{~mm} / 30.2 \mathrm{in}$ Depth: $773 \mathrm{~mm} / 30.5 \mathrm{in}$ Height: $1000 \mathrm{~mm} / 39.4 \mathrm{in}$
Weight	$291.5 \mathrm{~kg} / 642.5 \mathrm{lb}$ (approx.; CLC1150) $277.5 \mathrm{~kg} / 611.6 \mathrm{lb}$ (approx.; CLC1130) $272.5 \mathrm{~kg} / 600.6 \mathrm{lb}$ (approx.; CLC1120)
Consumables	Copy paper: Keep wrapped, and protect against moisture. Toner: Protect against direct sunlight, and keep under $40^{\circ} \mathrm{C}, 85 \%$

Table A-4

5. Default Ratios

a. Japan Australia, others (6R5E)

| Item | Enlargement | | Reduction |
| :---: | :---: | :---: | :---: | :---: |
| Default ratio | I $1: 1.154$ | I $1: 0.250$ | |
| | II $1: 1.224$ | II $1: 0.500$ | |
| | III $1: 1.414$ | III $1: 0.611$ | |
| | IV $1: 2.000$ | IV $1: 0.707$ | |
| | V $1: 4.000$ | V $1: 0.816$ | |
| | | | VI $1: 0.865$ |

Table A-5a
b. North America (5R4E)

| Item | Enlargement | | Reduction |
| :---: | :---: | :---: | :---: | :---: |
| Default ratio | I $1: 1.214$ | I $1: 0.25$ | |
| | II $1: 1.294$ | II $1: 0.50$ | |
| | III $1: 2.000$ | III $1: 0.647$ | |
| | IV $1: 4.000$ | IV $1: 0.733$ | |
| | | | V $1: 0.785$ |

Table A-5b
c. Europe (3R3E)

Item	Enlargement			Reduction
Default ratio	I	$1: 1.414$	I $1: 0.25$	
	II $1: 2.000$	II $1: 0.50$		
	III	$1: 4.000$	III $1: 0.707$	

Table A-5c

6. Copying Speed

Size	Copy paper size	copies/min (full color)	copies/min (mono color)
A3 $(297 \times 420 \mathrm{~mm})$	A3	5.5	21
A4 $(210 \times 297 \mathrm{~mm})$	A4	11	42
AAR $(297 \times 210 \mathrm{~mm})$	A4R	5.5	21
B4 $(257 \times 364 \mathrm{~mm})$	B4	5.5	21
B5 $(182 \times 257 \mathrm{~mm})$	B5	11	42
$279.4 \times 431.8 \mathrm{~mm}$	11×17	5.5	21
$(11 " \times 17 ")$			
LTR	LTR	11	42
LTRR	LTRR	5.5	21
LGL	LGL	5.5	21

Table A-6

Specifications are subject to change for product improvement.

7. CLC Paper Deck-E1

Item	Specifications
Pickup	No claw (retard)
Storage	Side tray
Copy paper type	Plain paper (64 to $105 \mathrm{~g} / \mathrm{m}^{2}$)
Copy paper size	A4, B5, LTR
Storage size	2500 sheets $\left(105 \mathrm{~g} / \mathrm{m}^{2}\right.$)
Serial No.	ZRU $* * * * * *$ ZRT $* * * * *$ ZRS $* * * * *$
Paper size switch	By size guide plate in steps and in service mode (OPTION $>$ ACC>DK-P)
Dimensions	Width: $323.2 \mathrm{~mm} / 127 \mathrm{in}$ Depth: $591 \mathrm{~mm} / 23.3$ in Height: $432 \mathrm{~mm} / 17.0$ in
Width	$30.6 \mathrm{~kg} / 67.4 \mathrm{lb}$
Power supply	DC, from the copier
Operating environment	Same as the copier

Table A-7

Specifications are subject to change for product improvement.

Prepared by
 OFFICE IMAGING PRODUCTS TECHNICAL SUPPORT DIVISION
 CANON INC.
 Printed in Japan

REVISION 0 (MAR. 1999) (18723/35338/71720)
REVISION 1 (JAN. 2000) (18723)
REVISION 2 (DEC. 2000) (18723)

5-1, Hakusan 7-chome, Toride-shi Ibaraki, 302-8501 Japan

This publication is printed on 100% recycled paper.

Canon

[^0]: * Be sure both upper and lower rollers are sufficiently heated.

[^1]: Cont'd

